期刊文献+

人工智能技术在轨道交通信号系统测试中的应用 被引量:5

Research on Application of Artificial Intelligence Technology in the Testing of Rail Transit Signaling System
在线阅读 下载PDF
导出
摘要 城市轨道交通信号系统的测试工作量大,迫切需要把一些重复的测试工作自动化,但站场图操作和显示仍需要人工操作和判定显示结果,常见自动化测试工具不能很好地支持。随着人工智能技术的发展,展现出减少信号系统测试过程中对人工依赖的前景。通过卷积神经网络(CNN)进行图像和数字信息的特征提取和识别,完成信号系统人机界面的识别和匹配,从而实现测试场景的自动执行和结果自动判断。同时对大量系统性能测试日志的特征进行提取,辅助人工发现异常特征的日志,提升性能测试效率。 The testing workload of an urban rail transit signaling system is heavy,and there is an urgent need to automate some repeated testing work.However,the operation and display of station/yard view still need manual operation and judgment of display results,which cannot be well supported by common automatic testing tools.With the development of artificial intelligence technology,the trend of reducing dependence on manpower emerges in the testing process of the signaling system.The Convolutional Neural Network(CNN)was applied to carry out feature extraction and recognition of image and digital information,complete the recognition and matching of man-machine interface of the signaling system,thus realizing the automatic execution of test scene and automatic judgment of results.The features of a great number of system performance test logs were extracted to assist the manual detection of logs with abnormal features and improve the performance test efficiency.
作者 兰青辉 刘锦峰 陈晓轩 LAN Qinghui;LIU Jinfeng;CHEN Xiaoxuan(CASCO SIGNAL LTD.,Shanghai 200071,China)
出处 《铁路技术创新》 2021年第S01期121-126,共6页 Railway Technical Innovation
关键词 轨道交通 信号系统 测试自动化 人工智能 rail transit signaling system test automation artificial intelligence
  • 相关文献

参考文献8

二级参考文献33

共引文献61

同被引文献24

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部