期刊文献+

Identification of low-resistivity-low-contrast pay zones in the feature space with a multi-layer perceptron based on conventional well log data 被引量:2

在线阅读 下载PDF
导出
摘要 In the early exploration of many oilfields,low-resistivity-low-contrast(LRLC)pay zones are easily overlooked due to the resistivity similarity to the water zones.Existing identification methods are model-driven and cannot yield satisfactory results when the causes of LRLC pay zones are complicated.In this study,after analyzing a large number of core samples,main causes of LRLC pay zones in the study area are discerned,which include complex distribution of formation water salinity,high irreducible water saturation due to micropores,and high shale volume.Moreover,different oil testing layers may have different causes of LRLC pay zones.As a result,in addition to the well log data of oil testing layers,well log data of adjacent shale layers are also added to the original dataset as reference data.The densitybased spatial clustering algorithm with noise(DBSCAN)is used to cluster the original dataset into 49 clusters.A new dataset is ultimately projected into a feature space with 49 dimensions.The new dataset and oil testing results are respectively treated as input and output to train the multi-layer perceptron(MLP).A total of 3192 samples are used for stratified 8-fold cross-validation,and the accuracy of the MLP is found to be 85.53%.
出处 《Petroleum Science》 SCIE CAS CSCD 2022年第2期570-580,共11页 石油科学(英文版)
基金 funded by the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03)
  • 相关文献

参考文献4

二级参考文献45

共引文献75

同被引文献36

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部