期刊文献+

大地电磁测深阶段式自适应正则化反演 被引量:7

Staged adaptive regularized inversion of magnetotelluric data
在线阅读 下载PDF
导出
摘要 如何合理确定正则化因子一直是地球物理反演的研究热点和难点。从提高反演稳定性的角度对正则化因子的选择进行考量,是确定正则化因子取值的新思路。此外,以往的正则化反演研究对非线性优化算法的随机性考虑不足。基于此,以Zhdanov提出的自适应算法为框架,提出了一种新的自适应正则化算法,即阶段式自适应算法,按照"阶段"自适应地调整正则化因子。将此方法分别应用于大地电磁测深(MT)的共轭梯度和差分进化算法(DE)反演。模型试验表明该算法可以提高反演的稳定性,在一定程度上降低衰减因子的影响,而且该算法具有同时适用于线性和非线性优化算法的特点。 How to reasonably choose a regularization factor has always been a hotspot and difficulty in geophysical inversion.Choosing the regularization factor from the perspective of improving the stability of inversion is a new idea.In addition,the randomness of nonlinear optimization algorithm is not considered enough in previous studies on regularized inversion.Based on the adaptive algorithm proposed by Zhdanov,we propose a self-adaptive regularized algorithm,also called"Staged Adaptive Algorithm",which adjusts the regularization factor stage by stage.We use the algorithm for magnetotelluric(MT)conjugate gradient inversion and differential evolution inversion.Model tests show that the new adaptive algorithm can improve the stability of inversion,reduce the influence of the attenuation factor to some extent,and it is applicable for linear and nonlinear optimization algorithms.
作者 郭一豪 陈晓 杨海燕 张志勇 曾志文 周勇 GUO Yihao;CHEN Xiao;YANG Haiyan;ZHANG Zhiyong;ZENG Zhiwen;ZHOU Yong(Engineering Research Center of Nuclear Technology Application(East China University of Technology)Mi-nistry of Education,Nanchang,Jiangxi 330013,China; School of Geophysics and Measurement-control Technology,East China University of Technology,Nanchang,Jiangxi 330013,China)
出处 《石油地球物理勘探》 EI CSCD 北大核心 2020年第4期906-914,705,共10页 Oil Geophysical Prospecting
基金 国家自然科学基金项目“基于线性相关约束的地球物理联合反演研究”(41604104)和“圆锥型场源矿井瞬变电磁法理论基础研究”(41974086) 东华理工大学教育部核技术应用工程研究中心开放基金项目“宽范围岩石物性约束技术的改进及其在相山地区MT和重力正则化联合反演中的应用”(HJSJYB2016-7) 江西省自然科学基金项目“城市多参数可控电磁勘探理论研究”(20192BAB202012)联合资助
关键词 阶段式自适应算法 正则化因子 大地电磁测深 共轭梯度 差分进化算法 staged adaptive algorithm regularization factor magnetotelluric(MT) conjugate gradient differential evolution algorithm
  • 相关文献

参考文献6

二级参考文献100

共引文献194

同被引文献79

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部