期刊文献+

人工智能辅助诊断系统对肺腺癌亚型的预测价值 被引量:3

Value of artificial intelligence analysis of CT quantitative parameters of ground-glass nodules in predicting subtypes of lung adenocarcinoma
在线阅读 下载PDF
导出
摘要 目的探讨人工智能(artificial intelligence,AI)辅助诊断系统分析磨玻璃结节(ground glass nodule,GGN)的CT定量参数对肺腺癌亚型的预测价值。方法回顾性选取新疆医科大学第一附属医院昌吉分院2017-01至2021-12经手术病理证实的肺内磨玻璃结节患者97例,根据病灶的浸润程度分为非浸润组(44例)和浸润组(53例)。提取GGN的AI定量参数特征,采用独立样本t检验比较两组间统计学差异;预测GGN病灶侵袭程度用受试者特征曲线(receiver operator characteristic curve,ROC)和二元Logistics回归模型评估AI定量参数的诊断效能。结果非浸润组和浸润组比较,GGN最大径、体积、平均CT值和实性成分所占比均有差异(P<0.05),CT定量参数的预测价值从高到低依次为实性成分占比、平均CT值、最大径、体积。Logistics回归分析显示实性成分占比(OR=1.262,P<0.05)及平均CT值(OR=1.010,P<0.05)在预测GGN侵袭中的诊断价值较高,可作为独立预测因子,诊断阈值为1.085%和-557.00 HU。结论AI可通过分析GGN的实性成分占比和平均CT值对肺腺癌亚型做出有效预判。 Objective To explore the predictive value of the CT quantitative parameters of ground-glass nodules(GGN)by artificial intelligence(AI)assisted diagnosis system for lung adenocarcinoma subtypes.Methods A total of 97 cases of GGN confirmed by surgery and pathology were retrospectively analyzed,and they were divided into non-invasive group and invasive group according to the degree of infiltration of the lesions.The characteristics of AI quantitative parameters were extracted,and the independent sample T test was used to compare the statistical differences between the two groups.Receiver operator characteristic curve(ROC)and binary logistic regression model were used to predict the degree of invasion of GGN lesions to evaluate the diagnostic performance of AI quantitative parameters.Results The maximum diameter GGN,volume,average CT value and proportion of solid components in the non-invasive group and the invasive group were different between the two groups(P<0.05).The prediction value of CT quantitative parameters from high to low was:solid component proportion,average CT value,maximum diameter,and volume.Logistic regression analysis showed that the proportion of real components(OR=1.262,P<0.05)and mean CT value(OR=1.010,P<0.05)had high diagnostic value in predicting GGN invasion and could be used as independent predictors,diagnostic thresholds 1.085%and-557.00 HU.Conclusions AI can effectively predict lung adenocarcinoma subtypes by analyzing the proportion of solid components and average CT value of GGN.
作者 杨建丽 牛海亚 于静 韩文倩 祁马莉亚 穆学涛 YANG Jianli;NIU Haiya;YU Jing;HAN Wenqian;QI Maliya;MU Xuetao(Department of Radiology,Training Site for Postgraduate of Jinzhou Medical University,Jinzhou 121000,China;Department of Radiology,Changji Branch of the First Affiliated Hospital of Xinjiang Medical University,Changji 831100,China;Department of Radiology,the Third Medical Center of Chinese PLA General Hospital,Beijing 100039,China)
出处 《武警医学》 CAS 2022年第12期1038-1041,1046,共5页 Medical Journal of the Chinese People's Armed Police Force
基金 新疆维吾尔自治区自然科学基金项目(2020DIA120)
关键词 人工智能 肺磨玻璃结节 定量参数 肺腺癌 artificial intelligence pulmonary ground-glass nodules quantitative parameter lung adenocarcinoma
  • 相关文献

参考文献9

二级参考文献51

共引文献122

同被引文献22

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部