期刊文献+

基于改进SCKF的电缆卷放车追踪电铲的精确定位算法研究 被引量:4

Accurate positioning algorithm of cable winder tracking electric shovel based on improved SCKF
在线阅读 下载PDF
导出
摘要 为了保证电铲可以长时间供电,提高工作效率及电缆工的安全保障,实现电缆卷放车跟随铲车移动,要对目标电铲进行实时跟踪定位。其定位系统采用基于到达时间差的超宽带(UWB)定位技术,为减小非线性及不确定因素的影响,利用改进的平方根容积卡尔曼算法(RSCKF)对目标电铲进行跟踪定位。通过Matlab对定位算法进行仿真实验,与容积卡尔曼(CKF)与平方根容积卡尔曼算法(SCKF)进行对比,仿真实验的定位误差保持在1m以下,且定位误差波动小,定位结果较稳定,为电缆卷放车提供良好的导航信息。 In order to ensure the long-time power supply of electric shovel,improve working efficiency and the safety of cable workers,and enable the cable winder move with the electric shovel,the target electric shovel must be tracked and located in real time.Its positioning system adopts ultra-wideband(UWB)positioning technology based on time difference of arrival.In order to reduce the influence of nonlinear and uncertain factors,the improved square root volume Kalman algorithm(RSCKF)is used to track and locate the target electric shovel.The positioning algorithm is simulated and compared with the volumetric Kalman(CKF)and square root volumetric Kalman algorithm(SCKF)in MATLAB.The positioning error of the simulation experiment is kept within 1 m,the fluctuation of the positioning error is small,and the positioning result is relatively stable,which can provide good navigation information for cable winder.
作者 王铨 周永利 钱洪云 陈伟华 彭继慎 WANG Quan;ZHOU Yong-li;QIAN Hong-yun;CHEN Wei-hua;PENG Ji-shen(China Shenhua International Engineering Co.,Ltd.,Beijing 100007,China;Shenhua Group Zhungeer Energy Co.,Ltd.,Ordos 010300,China;School of Electrical and Control Engineering,Liaoning University of Engineering and Technology,Huludao 125105,China)
出处 《煤炭工程》 北大核心 2020年第S02期116-120,共5页 Coal Engineering
关键词 电铲定位跟踪 超宽带 改进SCKF 误差对比 electric shovel positioning and tracking ultra-wideband improved SCKF error comparison
  • 相关文献

参考文献10

二级参考文献87

  • 1陈千颂,赵大龙,杨成伟,潘志文,霍玉晶.自触发脉冲飞行时间激光测距技术研究[J].中国激光,2004,31(6):745-748. 被引量:35
  • 2吴绍华,张乃通.室内信道环境下UWB精确测距研究[J].通信学报,2007,28(4):65-71. 被引量:17
  • 3石章松,刘忠,等.目标跟踪与数据融合理论及方法[M].北京:国防工业出版社,2010.35-40.
  • 4Aidala V J. Kalman filter behavior in bearing-only tracking ap- plication[J]. IEEE Trans. on Aerospace and Electronic Sys- tems, 1979, 15(1): 29-39.
  • 5Julier S J, Uhlman J K, Durrant Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Trans. on Automatic Control, 2000, 45(3) : 477 - 482.
  • 6Julier S J, Uhlman J K. Unscented filtering and nonlinear esti- mation[J]. Proceedings of the IEEE, 2004, 92(3) : 401 - 422.
  • 7Chang L B, Hu B Q, Li A, et al. Transformed unscented Kal- man filter[J]. IEEE Trans. on Automatic Control, 2013, 58 (1): 252-257.
  • 8Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Trans. on Automatic Control, 2009, 54(6): 1254-1269.
  • 9Jia B, Xin M, Cheng Y. High-degree cubature Kalman filter[J]. Automatic, 2013, 49(2): 410-518.
  • 10Leong P H, Arulampalam S, Larnahewa T A. A Gaussian-sum based cubature Kalman filter for bearings-only tracking[J]. IEEE Trans. on Aerospace and Electronic Systems, 2013, 49(2) : 1161 - 1176.

共引文献103

同被引文献34

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部