期刊文献+

基于MRI的纹理分析预测胶质瘤患者Ki-67表达状态的应用价值 被引量:10

The Value of Texture Analysis Based on MRI in Predicting the Expression of Ki-67 in Patients with Glioma
原文传递
导出
摘要 目的探讨MRI图像纹理分析预测胶质瘤患者Ki-67表达状态的应用价值。方法搜集经手术病理证实的116例胶质瘤患者,对其T1WI增强图像进行纹理分析,获取整个瘤体的平均值、中位数、标准差、偏度、峰度、能量和熵值等定量参数,并进行统计学分析。结果对MRI图像纹理分析后所获得的定量参数中,平均值、中位数、标准差3个参数在Ki-67(-)组与Ki-67(+)组间的差异无统计学意义,偏度、峰度、能量和熵值4个参数在Ki-67(-)组与Ki-67(+)组间的差异有统计学意义(P<0.001);熵值参数鉴别效能明显优于其他参数值,有较高的敏感度、特异度及准确率;对偏度、峰度、能量和熵值4个纹理分析定量参数进行多参数联合分析,AUC值为0.804,当阈值为0.372时,其诊断敏感度95.0%、特异度为76.8%、准确率为85.6%,较利用单个纹理分析定量参数鉴别的效能高。结论纹理分析定量参数中偏度、峰度、能量和熵值有助于预测胶质瘤患者Ki-67是否表达。 Objective To evaluate the value of MRI image texture analysis in predicting the expression of Ki-67 in patients with glioma.Methods 116 patients with glioma confirmed by operation and pathology were collected retrospectively.The T1-enhanced images were analyzed by texture analysis.The quantitative parameters such as mean,median,standard deviation,skewness,kurtosis,energy and entropy were obtained and analyzed statistically.Results Among the quantitative parameters obtained by texture analysis,there was no significant difference in mean,median and standard deviation between Ki-67(-)group and Ki-67(+)group,but there was significant difference in skewness,kurtosis,energy and entropy between Ki-67(-)group and Ki-67(+)group(P<0.001).The identification efficiency of entropy parameters is obviously better than that of other parameters,and has higher sensitivity,specificity and accuracy.The quantitative parameters of skewness,kurtosis,energy and entropy were analyzed by multi-parameter joint analysis.The AUC value was 0.804.When the threshold value was 0.804,the diagnostic sensitivity,specificity and accuracy were 95.0%,76.8%and 85.6%,respectively.Conclusion Some quantitative parameters(skewness,kurtosis,energy and entropy)of texture analysis are helpful to predict the expression of Ki-67 in glioma patients.
作者 董丽娜 李梦双 许倩 蔡璐璐 于可 罗涛 窦宾茹 解婷 李菁菁 徐凯 DONG Lina;LI Mengshuang;XU Qian(Department of Medical Imaging,Affiliated Hospital of Xuzhou Medical University,Xuzhou,Jiangsu Province 221006,P.R.China)
出处 《临床放射学杂志》 CSCD 北大核心 2020年第8期1478-1481,共4页 Journal of Clinical Radiology
基金 江苏省研究生实践创新计划项目(编号:SJCX18_0708) 江苏省自然科学基金优秀青年项目(编号:BK20170054) 江苏省“科教强卫”青年医学人才项目(编号:QNRC2016776) 中国博士后基金资助项目(编号:2016M601890,177607) 江苏省第十四批“六大人才高峰”高层次人才项目(编号:WSN-112) 2018年高层次卫生人才“六个一工程”拔尖人才科研项目(编号:LGY2018083)
关键词 纹理分析 磁共振成像 胶质瘤 KI-67 Texture analysis Magnetic resonance imaging Glioma Ki-67
  • 相关文献

参考文献7

二级参考文献40

  • 1袁礼海,宋建社,薛文通,郑永安.利用灰度和纹理特征的SAR图像分类研究[J].电光与控制,2007,14(4):58-62. 被引量:14
  • 2OLIVER C,SHAUN Que-gan.Understanding synthetic aperture radar images[M].Norwood:Artech House,1998:245-255.
  • 3ARDUINI F,BERTA R,FIORAVANTI S,et al.Texture characterization and SAR image segmentation[C]// Proceedings of the Seventh MDSP Workshop on September 23-25,1991:9-16.
  • 4PIERCE L,LIANG P,DOBSON M.Texture estimation in SAR images of forests[J].IGARSS'03,Provedings,2003 IEEE International Volume 6,2003:4010-4012.
  • 5BEAULIEU J M,TOUZI R.Segmentation of textured scenes using polarimetric SARs[J].IGARSS '03,Proceedings,2003 IEEE International Volume 1,2003:446-448.
  • 6WINKLER G.Image analysis random fields and dynamic monte carlo methods[M].Berlin:Springer-Verlag,1995:195-205.
  • 7BARALDI A,PARMIGGIANI F.An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters[J].IEEE Trans.Geosci.Remote Sensing,1995,33:293-304.
  • 8Fabio Dell'Aequa,Paolo Gamba.Texture-based characterization of urban environments on satellite SAR images[J].IEEE Trans.Geosci.Remote Sensing,2003,41 (1):153-159.
  • 9张祖进,李辉,郭召平,刘大鹏,张红远,张宗礼.PET/CT的技术性能及临床应用[J].医疗卫生装备,2007,28(10):59-60. 被引量:15
  • 10季学满,卢光明,张宗军,唐晓俊,王中秋,黄伟,张志强.原发性脑淋巴瘤与高级别脑胶质瘤的MR灌注成像对照研究[J].临床放射学杂志,2008,27(9):1155-1158. 被引量:22

共引文献154

同被引文献67

引证文献10

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部