摘要
研究连续时间线性时不变空间连接系统的稳定性分析与镇定控制器设计问题,其具有不同动态特性的子系统之间的连接关系为任意且时不变的.推导空间连接系统稳定性分析易于计算的充分必要条件,并给出系统稳定的基于单个子系统参数的充分条件和必要条件;在此基础上,进行基于单个子系统状态反馈的镇定控制器设计.所提方法能够避免高维矩阵的求逆等运算,而且充分利用了系统参数矩阵的块对角结构和子系统连接矩阵的稀疏特性.仿真结果显示,所得到的条件在大规模网络化系统的分析与综合中,计算效率有很大的提高.
The stability and stabilization are investigated for continuous-time linear time-invariant spatially interconnected systems composed of many subsystems with different dynamics and arbitrary and fixed connections.A computationally attractive necessary and sufficient condition is first derived for stability analysis of the systems,some necessary or sufficient conditions are then obtained,which essentially depend only on parameter matrices of each individual subsystem.Based on these stability conditions,a state feedback stabilizing controller is derived.These conditions avoid some algebraic computations such as inversion of high dimensional matrices,and utilize sufficiently the block-diagonal structure of system parameter matrices and the sparseness of the subsystem connection matrix.Numerical simulations show that they are computationally attractive in the analysis and synthesis of a large scale networked system.
作者
刘华波
于海生
LIU Hua-bo;YU Hai-sheng(School of Automation,Qingdao University,Qingdao 266071,China;Institute for Future,Qingdao University,Qingdao 266071,China)
出处
《控制与决策》
EI
CSCD
北大核心
2020年第3期749-756,共8页
Control and Decision
基金
国家自然科学基金项目(61573203,61573204,61573205,61873138)
中国博士后科学基金项目(2017M612190)
山东省高等学校科技计划项目(J18KA355)
青岛市博士后应用研究项目.