期刊文献+

基于PCL库的矿场环境点云配准方法研究 被引量:7

Research on point cloud registration method of mine environment based on PCL
在线阅读 下载PDF
导出
摘要 随着国内外基于工程环境的三维点云处理技术研究的不断深入,开源的PCL(Point Cloud Library)库应运而生并且发展迅速,三维点云配准技术广泛应用在机器视觉、人机交互、无人驾驶等诸多工程领域,且涉及到计算机学、几何计算、传感器等多学科融合。由于传统电铲在手动操作挖掘过程中对于矿场环境感知不足,导致矿山整体开采效率低下,易发生挖掘碰撞、机身倾覆等意外事故。文中基于PCL点云数据处理库,将基于FPFH特征的SAC-IA粗配准,与使用迭代最近点算法(ICP)的精配准方法合并使用,实现矿场环境点云的配准,为后续无人电铲环境感知的研究提供了数据保障。试验结果表明,该方法具有较好的精度与较快的配准速度。 With the continuous in-depth research of 3 D point cloud processing technology based on engineering environment at home and abroad,the open source PCL(Point Cloud Library)library emerged and developed rapidly.3 D point cloud registration technology is widely used in machine vision,human-computer interaction,Unmanned driving and many other engineering fields,and involve the integration of computer science,geometric calculation,sensors and other disciplines.Due to the insufficient perception of the mine environment during the manual excavation of the traditional electric shovel,the overall mining efficiency of the mine is low,and accidents such as excavation collision and overturning of the fuselage are prone to occur.Based on the PCL point cloud data processing library,this paper combines the SAC-IA coarse registration based on FPFH features and the fine registration method using the iterative closest point algorithm(ICP)to realize the registration of the point cloud in the mining environment.The research on environmental perception of unmanned electric shovel provides data guarantee.Experimental results show that this method has better accuracy and faster registration speed.
作者 李光 付涛 张天赐 LI Guang;FU Tao;ZHANG Tian-ci(State Key Laboratory of Mining Equipment and Intelligent Manufacturing,Taiyuan Heavy Industry Co.,Ltd.,Taiyuan 030024;School of Mechanical Engineering,Dalian University of Technology,Dalian 116024)
出处 《机械设计》 CSCD 北大核心 2021年第S01期174-177,共4页 Journal of Machine Design
关键词 PCL 点云配准 电铲 FPFH ICP PCL point cloud registration electric shovel FPFH ICP
  • 相关文献

参考文献7

二级参考文献32

  • 1朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 2Besl P J,McKay N D.A method for registration of 3D shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256.
  • 3戴静兰,陈志杨,叶修梓.ICP算法在点云配准中的应用[J].中国图象图形学报,2007,12(3):517-521. 被引量:198
  • 4Ll, Z., J. Chen, E. Bahsavias. Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences: 2008 ISPRS Congress Book[M]. Vol. 7. 2008: CRC Press.
  • 5Nurunnabi, A., G. West, I). Behon. Robust Locally Weighted Regression Techniques for Ground Surface Points Filtering in Mobile Laser Scanning Three Dimensional Point Cloud Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54 (4): 2181- 2193.
  • 6Zeng, Z., J. Wan, H. Liu. An Entropy-Based Filtering Approach for Airborne Laser Scanning Data[J]. Infrared Physics & Technology, 2016,117(2016): 141-146.
  • 7Rodrtguez-Caballero, E., A. Afana, S. Chamizo, et al. A New Adaptive Method to Filter Terrestrial Laser Scanner Point Clouds Using Morphological Filters and Spectral Information to Conserve Surface Micro-topography[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 141-148.
  • 8Hu, H., Y. Ding, Q. Zhu, et al. An Adaptive Surface Filter for Airborne Laser Scanning Point Clouds by Means of Regularization and Bending Energy[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2014, 92:98-111.
  • 9Rusu, R.B., Z.C. Marton, N. Blodow, et al. Towards 3D Point Cloud Based Object Maps for Household Environments[J]. Robotics and Autonomous Systems, 2008, 56( 11 ): 927-941.
  • 10Rusu, R.B., S. Cousins. 3d is here: Point Cloud Library (PCL)[C]. in Robotics and Automation (ICRA), 2011 IEEE International Con- ference on. Shanghai, China: IEEE. 2011: 1-4.

共引文献37

同被引文献81

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部