期刊文献+

Effect of Post-weld Tempering on the Microstructure and Mechanical Properties in the Simulated HAZs of a High-Strength-High-Toughness Combination Marine Engineering Steel 被引量:2

Effect of Post-weld Tempering on the Microstructure and Mechanical Properties in the Simulated HAZs of a High-Strength-High-Toughness Combination Marine Engineering Steel
原文传递
导出
摘要 The effects of tempering temperatures on the microstructure and mechanical properties of the simulated coarse-grain heataffected zone(CGHAZ) and inter-critical heat-affected zone(ICHAZ) were investigated for a high-strength-high-toughness combination marine engineering steel.The results demonstrate that the microstructure of the simulated CGHAZ and ICHAZ after tempering is characterized by tempering sorbites and coarse grain in the simulated CGHAZ.As tempering temperature increases,the tensile strength of the simulated CGHAZ and ICHAZ decreases and the Charpy absorbed energy of the simulated ICHAZ at-50℃increases remarkably,but the impact toughness of the simulated CGHAZ is not improved.After tempering at 550℃,the coarse flake carbides,which distribute at the prior austenite grain and martensite lath boundaries,deteriorate the impact toughness of the simulated CGHAZ.With the increase in tempering temperature,the morphology and the size of the carbides gradually change from coarse flake to fine granular,which is beneficial to the improvement of impact toughness.However,the coarse-grain size of the simulated CGHAZ and the M23 C6-type carbide precipitated along the grain boundaries weakens the enhancing effect of carbides on impact toughness. The effects of tempering temperatures on the microstructure and mechanical properties of the simulated coarse-grain heataffected zone(CGHAZ) and inter-critical heat-affected zone(ICHAZ) were investigated for a high-strength-high-toughness combination marine engineering steel.The results demonstrate that the microstructure of the simulated CGHAZ and ICHAZ after tempering is characterized by tempering sorbites and coarse grain in the simulated CGHAZ.As tempering temperature increases,the tensile strength of the simulated CGHAZ and ICHAZ decreases and the Charpy absorbed energy of the simulated ICHAZ at-50℃increases remarkably,but the impact toughness of the simulated CGHAZ is not improved.After tempering at 550℃,the coarse flake carbides,which distribute at the prior austenite grain and martensite lath boundaries,deteriorate the impact toughness of the simulated CGHAZ.With the increase in tempering temperature,the morphology and the size of the carbides gradually change from coarse flake to fine granular,which is beneficial to the improvement of impact toughness.However,the coarse-grain size of the simulated CGHAZ and the M23 C6-type carbide precipitated along the grain boundaries weakens the enhancing effect of carbides on impact toughness.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2020年第3期391-402,共12页 金属学报(英文版)
基金 financial support of the sponsor from the National Key Research and Development Program of China (No.2016YFB0300601) the Key Programs of Chinese Academy of Sciences (No.GFZD-125-15-003-1).
关键词 High-strength-high-toughness COMBINATION STEEL Post-weld heat treatment Heat-affected zones(HAZs) Carbides Impact TOUGHNESS High-strength-high-toughness combination steel Post-weld heat treatment Heat-affected zones(HAZs) Carbides Impact toughness
  • 相关文献

同被引文献20

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部