摘要
The electrooxidation of 5-hydroxymethylfurfural(HMFOR)not only offers a green route to attain high-value 2,5-furandicarboxylic acid(FDCA)from biomass,but also is considered as a promising approach to replace the kinetically sluggish OER for future hydrogen production.Herein,we report the construction and structural optimization of Ce-doped ultrasmall Co_(2)P nanoparticles(NPs)in carbon-based nanoarrays to boost HER-coupled HMFOR.We demonstrate that the electronic structure of Co-based electrocatalysts can be positively regulated by Ce doping and the optimized Ce-Co_(2)P-based electrocatalyst only require a low voltage of 1.20 V vs.RHE to achieve 10 m A cm^(-2)for HMFOR with an excellent FDCA Faraday efficiency(FEFDCA)of 98.5%,which are superior to its Ce-free counterpart(1.29 V vs.RHE;FEFDCA=83.9%).When being assembled into a HERcoupled HMFOR system,this bifunctional electrocatalyst can achieve 50 m A cm^(-2)with an ultralow voltage of 1.46 V,which is reduced by 210 m Vas compared with that of its Ce-free counterpart(1.67 V).Quasi-operando experiments and DFTcalculations further reveal the significant roles of Ce doping in promoting the charge transfer between active sites and HMF,and reducing the free energy barrier of intermediate(^(*)HMFCA)dehydrogenation.This study provides new insights into the underlying mechanisms of Ce doping into metal phosphides for boosting HER-coupled HMFOR,developing a facile methodology to construct efficient electrocatalysts for energy storage/conversion systems.
基金
supported from the Natural Science Foundation of Guangdong Province(2023B1515040005)
the State Key Laboratory of Pulp and Paper Engineering(2022PY05)
the National Natural Science Foundation of China(22138003,21825802)