期刊文献+

一种提高认知无线Mesh网络性能的技术研究

Technology for Improvingthe Performance of Cognitive Wireless Mesh Networks
原文传递
导出
摘要 近年来,数据的需求量大大的增加,如何能在有限的频谱下传送更多的数据,提高频谱的利用率问题成为人们关注的焦点,无线认知Mesh网络的出现及发展正是符合了这一要求。文中对无线感知技术中PCA算法进行了详细的研究,并结合MATLAB对PCA算法进行了实际的仿真,最终得出了利用PCA算法的降维技术能有效解决数据量大带来的计算、处理、分类等难题,是提高无线认知Mesh网络性能的一个有力措施。 In recent years,the demand for data has increased dramatically.How to transmit more data under limited spec⁃trum and improve the utilization of spectrum has become the focus of attention,The emergence and development of wireless cognitive Mesh network meets this requirement.In this paper,PCA algorithm in wireless sensing technology is studied in de⁃tail and the PCA algorithm is simulated with MATLAB,Finally,it is concluded that the dimension reduction technology based on PCA algorithm can effectively solve the problems of computation,processing and classification caused by large amount of data,It is a powerful measure to improve the performance of wireless cognitive Mesh network.
作者 马晓鑫 辛向青 展先彪 刘佳琪 Ma Xiaoxin;Xin Xiangqing;Zhan Xianbiao;Liu Jiaqi(School of Electronic and Control Engineering,North China Institute of Aerospace Engineering;School of Mechanical and Electrical Engineering,North China Institute of Aerospace Engineering,Langfang 065000,China)
出处 《北华航天工业学院学报》 CAS 2020年第2期5-7,共3页 Journal of North China Institute of Aerospace Engineering
基金 北华航天工业学院青年基金项目(KY-2017-08)
关键词 无线感知 降维技术 PCA算法 MATLAB仿真 wireless sensing dimension reduction technology PCA algorithm MATLAB simulation
  • 相关文献

参考文献2

二级参考文献16

  • 1Mtola J, Magutre G Q. Cognitive radio: making software radios more personal[C]. IEEE Personal Communications, Aug. 1999, 6: 13-18.
  • 2Mitola J. Cognitive radio: an integrated agent architecture for software defined radio[D]. Ph.D Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2000.
  • 3HaykinS. Coguitiveradio: brain-empowed wireless communication[J]. IEEE Journal on Selected Areas in Communications, 2005,23 (02):201-220.
  • 4Cabric D, Mishra S M, Brodersen R W. Implementation issues in spectrum sensing for cognitive radios[C]. IEEE Signals, Systems, and Computers, Nov. 2004, 1:772-776.
  • 5Tandra R, Anant Sahai. Fundamental limits on detection in low SNR under noise uncertainty[C]. IEEE Signal Processing. June 2005, 1:464- 469.
  • 6Tandra R. Fundamental limits on detection in low SNR[D].Master' s thesis University of Califomia, Berkeley, 2005.
  • 7BELKIN M,NIYOGI P.Laplacian Eigenmaps and spectral techniquesfor embedding and clustering[].Proc of Advances in Neural Infor-mation Processing Systems.2001
  • 8ZHANG Zhen-yue,ZHAHong-yuan.Principal manifolds and nonlin-ear dimensionality reduction via local tangent space alignment[].SIAM Journal of Scientific Computing.2004
  • 9TENENBAUM J B.Mapping a manifold of perceptual observations[].Proc of Adwances in Neural Information Processing Systems.1998
  • 10Hotelling H.Analysis of a complex of statistical variables into principal components[].Journal of Education.1933

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部