期刊文献+

RBF神经网络组合模型在GPS高程拟合中的应用 被引量:14

Application of Combination Model Based on RBF Neural Network in GPS Elevation Fitting
原文传递
导出
摘要 针对函数模型和BP(back propagation)神经网络等常用GPS高程拟合方法模型单一、拟合精度不高的问题,本文在上述模型高程异常拟合的基础上使用RBF(radial basis function)神经网络对拟合残差值进行二次拟合,对高程异常拟合值进行残差改正以提高拟合精度。从内外符合精度、拟合残差大小分布等方面对组合模型和单一模型拟合结果进行对比,结果表明:组合模型的拟合精度相较于函数模型有显著提高,但对BP神经网络的拟合结果改善不明显。 The common GPS height fitting methods such as function model and BP neural network are single and have low fitting accuracy.This paper uses RBF neural network to fit the residual value based on the above models,and corrects the residual value of the height anomaly fitting value to improve the fitting accuracy.The combined model and the single model are compared from the internal and external coincidence accuracy and the fitting residual size distribution.The results show that the fitting accuracy of the combined model is significantly higher than that of the function model,but the improvement of the BP neural network is not obvious.
作者 岳春芳 宋金元 YUE Chunfang;SONG Jinyuan(College of Hydraulic and Civil Engineering of Xinjiang Agricultural University,Urumqi 830052,China)
出处 《测绘地理信息》 2020年第1期20-22,共3页 Journal of Geomatics
基金 新疆教育厅创新项目(XJEDU2017T004).
关键词 GPS高程拟合 函数模型 神经网路 组合模型 GPS elevation fitting function model neural network combination model
  • 相关文献

参考文献12

二级参考文献109

共引文献134

同被引文献129

引证文献14

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部