期刊文献+

车载点云中杆状地物的形态分析与分类研究 被引量:8

Research on morphological analysis and classification of pole-like objects from mobile LiDAR point clouds
原文传递
导出
摘要 针对车载激光雷达(LiDAR)数据中杆状地物分类效果不理想的问题,该文对从车载LiDAR数据中提取的杆状地物进行形态分析与分类研究。首先,利用基于体素的方法对杆状地物进行提取。其次,对提取出的杆状地物进行形态分析,使用ESF特征、几何特征及附属物拓扑特征作为杆状地物的特征向量集。最后,利用随机森林分类器对特征向量集进行重要性分析,构建最优特征子集,对杆状地物进行精细分类。该文在3个数据集上进行试验以验证方法的有效性。结果表明,该文方法对杆状地物有较好的分类效果,准确率分别为91.8%、89.23%和88.51%。 Aiming at the challenging issue of the classification of pole-like objects extracted from mobile light detection and ranging(LiDAR)data,this paper studied on the shape analysis and classification of them.First,the pole-like objects were automatically extracted using a voxel-based method.Second,the shape analysis on the extracted pole-like objects was performed using ensemble of shape functions(ESF)feature descriptor,geometric feature and attached parts topological feature as the feature vector set to represent pole-like objects.Finally,The random forest classifier was used to analyze the feature importance for constructing optimal feature subset,and the constructed optimal feature subset served as input for further classification.Experiments were carried out on three datasets to verify the effectiveness of the method.The results indicated that the proposed method was effective and showed a good classification result on pole-like objects,with the overall accuracies of 91.8%,89.23%,and 88.51%respectively.
作者 杨洲 康志忠 杨俊涛 周梦蝶 孔民 YANG Zhou;KANG Zhizhong;YANG Juntao;ZHOU Mengdie;KONG Min(School of Land Science and Technology,China University of Geosciences(Beijing),Beijing 100083,China;Shanxi Key Laboratory of Resources,Environment and Disaster Monitoring,Jinzhong,Shanxi 030600,China)
出处 《测绘科学》 CSCD 北大核心 2020年第1期69-76,共8页 Science of Surveying and Mapping
基金 国家自然科学基金项目(41872207).
关键词 形态分析 杆状地物分类 随机森林 ESF特征 车载LiDAR morphological analysis pole-like objects classification random forest ESF feature mobile LiDAR
  • 相关文献

参考文献4

二级参考文献32

  • 1王健,靳奉祥,吕海彦,林照明.基于车载激光测距的建筑物立面信息提取[J].山东科技大学学报(自然科学版),2004,23(4):8-11. 被引量:14
  • 2史文中,李必军,李清泉.基于投影点密度的车载激光扫描距离图像分割方法[J].测绘学报,2005,34(2):95-100. 被引量:92
  • 3吴芬芳,李清泉,熊卿.基于车载激光扫描数据的目标分类方法[J].测绘科学,2007,32(4):75-77. 被引量:25
  • 4Zhao H,Shibasaki R.Reconstructing a Textured CADModel of an Urban Environment using Vehicle-borne La-ser Range Scanners and Line Camera[J].MachineVision and Applications,2003:35-41.
  • 5Haider Ali,Basheer Ahmed.Robust Window Detectionfrom 3D Laser Scanner Data[C] //Congress on Imageand Signal Processing.IEEE,Computer Society.
  • 6Manandhar D,Shibasaki R.Vehicle-borne laser Map-ping System(VLMS)for 3D Urban GIS Database[C] //the 7th Int.Conf.on Computers in Urban Plan-ning and Urban Management Conf[CD-ROM].Uni-versity of Hawaii at Manoa,USA,2001.
  • 7Abuhandrous I,Ammoun S,Nashashibi F,etal.Digitizing and 3D Modeling of Urban Environmentsand Roads using Vehicle-borne Scanner System[R].International Conference on Intelligent robots and sys-tems,Sendai,Japan,2004.
  • 8Geo-3D Inc,Canada,a Trimble Company.T3D AnalystV4.5 Guide&Auto Pole Detection plugin.pdf[J].2009,10:219-224.Http://www.Geo-3d.com.
  • 9Haala N, Brenner C. Extraction of Buildings andTrees in Urban Environments [J ]. ISPRS Journalof Photogrammetry and Remote Sensing,1999,54(2) : 130-137.
  • 10Stassopoulou A, Caelli T. Building Detection UsingBayesian Networks [ J]. International J ournal ofPattern Recognition and Artificial Intelligence,2000, 14(6) : 715-733.

共引文献163

同被引文献108

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部