期刊文献+

血清人附睾蛋白4、内皮细胞特异性分子1及表皮生长因子受体在肺癌诊断中的价值

Values of serum human epididymis protein 4, endothelial cell specific molecule-1 and epidermal growth factor receptor in the diagnosis of lung cancer
原文传递
导出
摘要 目的探讨血清人附睾蛋白4(HE4)、内皮细胞特异性分子1(ESM-1)及表皮生长因子受体(EGFR)在肺癌诊断中的价值。方法回顾性分析2019年12月至2021年1月唐山市人民医院经病理确诊的90例肺癌患者和50例肺良性病变患者临床资料,选择40名同期健康体检者为对照。采用电化学发光法检测三组血清HE4水平,酶联免疫吸附试验检测ESM-1、EGFR水平。比较三组血清HE4、ESM-1、EGFR表达水平差异;采用logistic回归分析筛选诊断肺癌有效指标,构建诊断肺癌的预测模型。以病理诊断结果为金标准绘制受试者工作特征(ROC)曲线,评价各指标对肺癌的诊断效能。结果肺癌组、肺良性病变组与健康对照组血清HE4水平分别为119.55 pmol/L(82.06 pmol/L,189.00 pmol/L)、58.84 pmol/L(45.62 pmol/L,69.41 pmol/L)、42.67 pmol/L(37.09 pmol/L,51.84 pmol/L),ESM-1水平分别为33.00 ng/ml(25.85 ng/ml,47.40 ng/ml)、20.14 ng/ml(11.93 ng/ml,28.90 ng/ml)、15.39 ng/ml(11.84 ng/ml,20.19 ng/ml),EGFR水平分别为46.60 pg/ml(37.45 pg/ml,58.98 pg/ml)、32.77 pg/ml(26.27 pg/ml,40.86 pg/ml)、30.43 pg/ml(27.54 pg/ml,35.75 pg/ml),3组间各指标比较差异均有统计学意义(均P<0.001),肺癌组血清HE4、ESM-1、EGFR水平均高于肺良性病变组与健康对照组。肺癌患者中,以HE4(X_(1))、ESM-1(X_(2))、EGFR(X_(3))为自变量,以病理诊断结果为因变量进行logistic回归分析,建立肺癌预测回归模型:P=0.171X_(1)+0.351X_(2)+0.184X_(3)-24.660,计算得到预测肺癌的准确率可达98.5%,血清HE4、ESM-1、EGFR是肺癌发生的危险因素(均P<0.05)。ROC曲线下面积由高到低依次为HE4(0.960)、ESM-1(0.942)、EGFR(0.859),血清HE4水平为63.67 pmol/L时诊断的灵敏度为86.7%,特异度为97.5%。肺癌患者血清HE4与EGFR具有相关性(r=0.304,P=0.004),ESM-1与EGFR具有相关性(r=0.416,P<0.001)。结论血清HE4、ESM-1、EGFR可作为诊断肺癌的有效指标,根据3种血清肿瘤标志物建立的预测模型对肺癌的诊断与预测具有较好的价值。 Objective To investigate the diagnostic values of human epididymis protein 4(HE4),endothelial cell specific molecule-1(ESM-1)and epidermal growth factor receptor(EGFR)for lung cancer.Methods The clinical data of 90 patients with lung cancer and 50 patients with benign lung diseases diagnosed by the pathological examination in Tangshan People's Hospital from December 2019 to January 2021 were retrospectively analyzed,and 40 healthy physical examiners in the same period were selected as the controls.The serum HE4 levels were detected by electrochemiluminescence method.The serum ESM-1 and EGFR levels were tested by enzyme-linked immunosorbent assay.The differences in serum HE4,ESM-1 and EGFR levels between the three groups were compared;logistic regression analysis was used to screen out the effective indicators for the diagnosis of lung cancer and to construct a prediction model for the diagnosis of lung cancer.Using pathological diagnosis result as the gold standard,the receiver operating characteristic(ROC)curve was drawn,and the diagnostic efficacy of indicators for lung cancer was evaluated.Results The levels of serum HE4 in lung cancer group,benign lung diseases group and healthy control group were 119.55 pmol/L(82.06 pmol/L,189.00 pmol/L),58.84 pmol/L(45.62 pmol/L,69.41 pmol/L)and 42.67 pmol/L(37.09 pmol/L,51.84 pmol/L),the levels of ESM-1 were 33.00 ng/ml(25.85 ng/ml,47.40 ng/ml),20.14 ng/ml(11.93 ng/ml,28.90 ng/ml)and 15.39 ng/ml(11.84 ng/ml,20.19 ng/ml),and the levels of EGFR were 46.60 pg/ml(37.45 pg/ml,58.98 pg/ml),32.77 pg/ml(26.27 pg/ml,40.86 pg/ml)and 30.43 pg/ml(27.54 pg/ml,35.75 pg/ml),and the differences in each indicator among the three groups were statistically significant(all P<0.001).The levels of serum HE4,ESM-1 and EGFR in lung cancer group were higher than those in benign lung diseases group and healthy control group.In patients with lung cancer,logistic regression analysis was performed with HE4(X_(1)),ESM-1(X_(2))and EGFR(X_(3))as the independent variables and pathological diagnosis as the dependent variable,and a lung cancer prediction regression model was established:P=0.171X_(1)+0.351X_(2)+0.184X_(3)-24.660.The accuracy of this model in predicting lung cancer could reach 98.5%,and serum HE4,ESM-1 and EGFR were risk factors for the occurrence of lung cancer(all P<0.05).The area under ROC curve from high to low was HE4(0.960),ESM-1(0.942)and EGFR(0.859).The diagnostic sensitivity of serum HE463.67 pmol/L for lung cancer was 86.7%,and the specificity was 97.5%.Both serum HE4(r=0.304,P=0.004)and ESM-1(r=0.416,P<0.001)were correlated with EGFR.Conclusions Serum HE4,ESM-1 and EGFR can be used as effective indicators for the diagnosis of lung cancer,and the prediction model established based on the three serum tumor markers is of good value for the diagnosis and prediction of lung cancer.
作者 张玉敏 张小楠 高秀娟 鞠思敏 李玉柱 周琪 Zhang Yumin;Zhang Xiaonan;Gao Xiujuan;Ju Simin;Li Yuzhu;Zhou Qi(Department of Medical Laboratory,Tangshan People's Hospital,Tangshan 063000,China;Department of Radiotherapy and Chemotherapy,Tangshan People's Hospital,Tangshan 063000,China;Department of Radiology,Tangshan People's Hospital,Tangshan 063000,China;Department of Health Care,Tangshan People's Hospital,Tangshan 063000,China)
出处 《肿瘤研究与临床》 CAS 2023年第2期81-85,共5页 Cancer Research and Clinic
基金 河北省医学科学研究重点课题(20220218) 河北省医学科学研究重点课题(20201538) 唐山市科学技术研究与发展计划项目创新团队(19130202C)
关键词 肺肿瘤 人附睾蛋白4 内皮细胞特异性分子1 受体 表皮生长因子 Lung neoplasms Human epididymis protein 4 Endothelial cell specific molecule-1 Receptor,epidermal growth factor
  • 相关文献

参考文献4

二级参考文献63

  • 1Siegel RL, Miller KD, JemaI A. Cancer statistics, 2015. CA Cancer J Clin, 2015, 65(1): 5-29.
  • 2Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012: estimated cancer incidence and mortality and prevalence worldwide in 2012 [EB/OL]. (2013) [2015-03-26].
  • 3Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
  • 4Tanoue LT, Tanner NT, Gould MK, et al. Lung cancer screening. AmJ Respir Crit Care Med, 2015, 191(1): 19-33.
  • 5Henschke CI, McCauley DI, Yankelevitz DF, et al. Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet, 1999, 354(9173): 99-105.
  • 6Henschke CI, Boffetta P, Gorlova O, et al. Assessment of lung-cancer mortality reduction from CT screening. Lung Cancer, 2011, 71 (3): 328-332.
  • 7National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N EnglJ Med, 2011, 365(5): 395-409.
  • 8National Lung Screening Trial Research Team, Aberle DR, Berg CD, et al. The National Lung Screening Trail: overview and study design. Radiology, 2011, 258(1): 243-253.
  • 9van Iersel CA, de Koning HJ, Draisma G, et al. Risk-based selection from the general population in a screening trial: selection criteria, recruitment and power for the Dutch-Belgian randomized lung cancer multi-slice CT screening trial (NELSON). IntJ Cancer, 2007, 120(4): 868-874.
  • 10Oudkerk M, Heuvelmans MA. Screening for lung cancer by imaging: the Nelson study. JBR-BTR, 2013, 96(3): 163-166.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部