期刊文献+

变分不等式的一种改进的拟牛顿法

A modified Quasi-Newton method for Variational Inequality
在线阅读 下载PDF
导出
摘要 构造了一个具有二次光滑性的NCP函数,通过它将变分不等式问题转化为无约束优化问题,用一种改进的拟牛顿算法对其进行求解,有效地弥补了以往的拟牛顿算法要求目标函数具有凸性或一致凸性的缺陷,在更弱的条件下讨论了算法的收敛性质。 A new equivalent reformulation of unconstrained optimization problem to the KKT condi-tions was proposed.Then a modified quasi-Newton method for solving the unconstrained optimization problem was proposed based on it.A remarkable feature of our method is that it possesses a global con-vergence even without convexity assumption on the objective function.it only relies on the assumption that the objective function has Lipschize continuous gradient.
出处 《集宁师专学报》 2007年第4期9-15,共7页 Journal of Jining Teachers College
关键词 KKT-方程组 NCP-函数 拟牛顿方法 全局收敛 Variational inequality problem KKT-condition Quasi-Newton method Convergence
  • 相关文献

参考文献2

二级参考文献12

  • 1Chen, B. and Harker, P.T. A non-interior-point continuation method for linear complementarity problems. SIAM J. Matrix Anal. Appl, 1993, 14:1168-1190
  • 2Cottle, R.W, Pang, J.S. and Stone, R.E. The linear complementarity problem. Boston:Academic Press, 1992
  • 3Eckstein, J. and Ferris, M. C. Smooth methods of multipliers for complementarity problems.Math. Programming, 1999, 86:65-90
  • 4Harker, P.T. and Pang, J.S. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications. Math. Programming,1990, 48:161-220
  • 5Isac, G. Complementarity problem. Berlin Heidelberg: Springer-Verlag, 1992
  • 6Kanzow, C. Some noninterior continuation methods for linear complementarity problems.SIAM J. Matrix Anal. Appl, 1996, 17:851-868
  • 7Peng, J.M. and Lin, Z.H.. A noninterior continuation method for generalized linear complementarity problems. Math. Programming, 1999, 86:533-563
  • 8Qi, H.D. and Liao, L.Z. A smoothing Newton method for extended vertical linear complementarity problems. SIAM J. Matrix Anal. Appl, 1999, 21:45-66
  • 9Clarke, F.H. Optimization and nonsmooth analysis. New York: Wiley, 1983
  • 10修乃华.互补问题非内点法的一步二次收敛性[J].科学通报,1999,44(14):1483-1488. 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部