期刊文献+

基于多测量融合的粒子滤波跟踪算法 被引量:8

Multi-measurement Fusion for Visual Tracking by Particle Filter
在线阅读 下载PDF
导出
摘要 复杂背景下运动目标的可靠跟踪,是计算机视觉领域中一个极具挑战性的问题。提出了一种融合颜色和纹理信息的粒子滤波跟踪算法,在粒子滤波的测量阶段,使用颜色直方图对目标进行颜色描述,用梯度方向向量对目标进行纹理描述。对这两种信息,分别用Bhattacharyya系数和欧几里德距离比较粒子与参考模板的相似性。为解决目标变化和遮挡问题,采用了模板更新策略。实验结果表明该方法是稳健的,能够在复杂的背景下对运动目标进行有效、可靠的跟踪。 Visual tracking in a clutter background remains to be a challenging task by far. The particle filter based tracking algorithm proposed in this paper fuses color and texture information to build a robust measurement function. During the measurement step, the color information and texture information were represented by color histograms and gradient orientation vector respectively. Bhattacharyya coefficient and Euclidean distance were used to set up an effective connection between the estimated model parameters and the image likelihoods. Moreover, to overcome the problem of appearance changes, partial occlusions and significant clutter, an adaptive model update method was adopted. Experimental results show that the proposed method is robust and effective.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2007年第5期26-30,共5页 Journal of National University of Defense Technology
关键词 视觉跟踪 粒子滤波 多测量融合 颜色直方图 梯度方向 visual tracking particle filter multi-cue fusion color histogram gradient orientation
  • 相关文献

参考文献15

  • 1[1]Hom B K P.Robot Vision[M].Cambridge:Mit Press,1986.
  • 2[2]Tekalp A M.Digital Video Processing[M].Prentice Hall,1998:93-97.
  • 3[3]Shalom Y B,Rong L X.Estimation and Tracking Principles,Techniques,and Software[M].Boston:Artech House,1992.
  • 4[4]Comaniciu D,Ramesh V,Meer P.Real-time Tracking of Non-rigid Objects Using Mean Shift[C]//Proc.IEEE Conf.Computer Vision and Pattem Recognition,2000:142-149.
  • 5[5]Isard M,BlakeA.Condensation-Conditional Density Propagation for Visual Tracking[J].International Journal of Computer Vision,1998,28(1):5-28.
  • 6[6]Gordon N J,Salmond D J,Smith A F M.Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation[J].IEEE Proc.F,Radar Signal Process,1993,140(2):107-113.
  • 7[7]Doucet A,Freitas J F G,Cordon N J.Sequential Monte Carlo Methods in Practice[M].New York:Springer-Verlag,2001.
  • 8李涛,薛祖瑞,胡小平.一种使用非等权值粒子的确定性粒子滤波算法[J].国防科技大学学报,2004,26(1):72-76. 被引量:3
  • 9[9]Fong W,Godsill S J,Doucet A,et al.Monte Carlo Smoothing with Application to Audio Signal Enhancement[J].IEEE Trans.on Signal Processing,2002,50(2):438-449.
  • 10[10]Djuric P M,Kotecha J H,Zhang J,et al.Particle filtering:A Review of the Theory and How It Can Be Used for Solving Problems in Wireless Communications[J].IEEE Signal Processing Magazine,2003,20(5):19-381.

二级参考文献34

  • 1程建,杨杰.一种基于均值移位的红外目标跟踪新方法[J].红外与毫米波学报,2005,24(3):231-235. 被引量:42
  • 2凌建国,刘尔琦,杨杰,杨磊.基于H_∞滤波器的红外小目标运动预测和跟踪方法[J].红外与毫米波学报,2005,24(5):366-369. 被引量:11
  • 3Beymer D, McLauchlan P. Coifman B, Malik J. A real-time computer vision system for measuring traffic parameters.Computer Vision and Pattern Recognition, 1997. 495-501.
  • 4Greiffenhagen M, Ramesh V, Comaniciu D, Niemann H. Statistical modeling and performance characterization of a real-time dual camera surveillance system. Computer Vision and Pattern Recognition ,2000. 335-342.
  • 5Segen J , Pingali S. A camera-based system for tracking people in real time. In:International Conference on Pattern Recognition, 1996. 63-67.
  • 6Gordon N, Salmond D. Bayesian state estimation for tracking and guidance using the bootstrap filter. Journal of Guidance. Control and Dynamics, 1995,18(6): 1434-1443.
  • 7Isard M, Blake A. Contour tracking by stochastic propagation of conditional density. European Conference on Computer Vision, 1996. 343-356.
  • 8Isard M, Blake A. CONDENSATION--Conditional density propagation for visual tracking. International Journal Computer Vision ,1998,1(29) :5-28.
  • 9Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 1996,5 ( 1 ) : 1 - 25.
  • 10Koller D, Weber J, Malik J. Robust multiple car tracking with occlusion reasoning. In:European Conference on Computer Vision, 1994. 189- 196.

共引文献88

同被引文献57

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部