期刊文献+

基于模糊聚类分析的边缘检测算法 被引量:5

Image edge-detection algorithm based on fuzzy cluster analysis
在线阅读 下载PDF
导出
摘要 将模糊c-均值聚类算法(FCM)应用到图像的边缘检测中。首先,将灰度图像中的每一个像素点看成是一个数据样本,将该点的灰度值经过Robert算子、Sobel算子和Prewitt算子处理构成它的特性向量,形成具有三维特征的数据集,然后对这个数据集应用模糊聚类算法进行分类,自适应地检测出图像的边缘点,达到提取边缘的目的。实验结果表明,这种混合算法能得到很好的边缘检测效果,并且得到的结果无需再细化处理,提高了边缘定位的精度。 In this paper, an fuzzy c-means clustering method (FCM) is presented to solve edge detection problems. Firstly, a pixel point in a gray image is regarded as a data sample, and its gray values which is processed by Robert operator, Sobel operator and Prewitt operator makes up of the feature vectors of this data sample. In this way a data set with three-dimensional features can be obtained. Then the FCM is used for this data set, it can detect out the edge points adaptively. The experimental results show that this method can detect out the edge of an image correctly, its results need not to be adjusted, it can enhance the precision of edge orientation.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第z2期1603-1604,共2页 Chinese Journal of Scientific Instrument
基金 国家863计划(2002AA731213) 空间目标图像特性提取和识别的串行实时处理技术资助项目
关键词 模糊聚类 边缘检测 ROBERT算子 SOBEL算子 PREWITT算子 fuzzy cluster edge detection Robert operator Sobel operator Prewitt operator
  • 相关文献

参考文献2

二级参考文献22

  • 1[1]J. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, 1981.
  • 2[3]A. M Bensaid, L. O Hall, J. C Bezdek. P Clarke. Partially supervised clustering for image segmentation. Pattern Recognition, 1996.
  • 3[4]A. M Bensaid, L. O Hall, J. C Bezdek, and L. P Clarke, et al., Validity guided (re)clustering with applications to image segmentation. IEEE Trans. Fuzzy Systems, Vol. 4, 1996.
  • 4Pawlak Z. Rough Set: Theoretical Aspects of Reasoning about Data Boston: Kluwer Publishers, 1991.
  • 5Skowron A, Peters J F. Rough sets: Trends and challenges. In: Wang G, Liu Q, Yao Y, Skowron A, eds. Rough Sets, Fuzzy Sets,Data Mining and Granular Computing. LNAI 2639, Berlin, Heidelberg: Springer-Verlag, 2003.25-34.
  • 6Tsumoto S. Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model. Information Sciences,2004,162(2) :65-80.
  • 7Peters JF, Skowron A. A rough sets approach to knowledge discovery. International Journal of Intelligent Systems, 2002,17(2):109-112.
  • 8Huang C-C, Tseng T-L. Rough set approach to case-based reasoning application. Expert Systems with Applications, 2004,26(3):369-385.
  • 9Polkowski L. Toward rough set foundations-mereological approach. In: Tsumoto S, Slowinski R, Komorowski HJ, Grzymala-Busse JW, eds. Rough Sets and Current Trends in Computing. LNAI 3066, Berlin, Heidelberg: Springer-Verlag, 2004. 8-25.
  • 10Peters JF, Skowron A, Synak P, Ramanna S. Rough sets and information granulation. LNCS 2715, Heidelberg: Springer-Verlag,2003. 370-377.

共引文献22

同被引文献48

  • 1PI QingLing1,2,3 & HU JianYu1,2 1 State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China,2 Department of Oceanography, Xiamen University, Xiamen 361005, China,3 China Communications Construction Company First Harbor Consultants CO., LTD., Tianjin 300222, China.Analysis of sea surface temperature fronts in the Taiwan Strait and its adjacent area using an advanced edge detection method[J].Science China Earth Sciences,2010,53(7):1008-1016. 被引量:31
  • 2张爱华,谭劲.边缘信息指导下的半模糊聚类图像分割方法[J].华中科技大学学报(自然科学版),2005,33(6):8-11. 被引量:5
  • 3段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术,2005,31(3):415-419. 被引量:380
  • 4翟艺书,柳晓鸣.基于小波变换和模糊c-均值聚类的图像边缘检测[J].大连海事大学学报,2005,31(4):83-86. 被引量:2
  • 5Krishnanand K N, Ghose D. Glowworm Swarm Optimiza- tion: A New Method for Optimizing Multi-Modal Func- tions[ J ]. International Journal of Computational Intelli- gence Studies,2009,1 ( 1 ) :93-119.
  • 6Valian E, Tavakoli S, Mohanna S, et al. Improved cuckoo search for reliability optimization problems. Computer & Industrial Engineering, 2013, 64: 456-468.
  • 7Park H, Mitsumine H, Fujii M. Adaptive edge detection for robust model-based camera tracking [ J ]. IEEE Tran- sactions on Consumer Electronics, 2011,57 (4) : 1465- 1470.
  • 8Deng S J, Tian Y, Hu X P, et al. Application of new ad- vanced CNN structure with adaptive thresholds to color edge detection [ J ]. Communications in Nonlinear Science and Numerical Simulation, 2012,17 (4) : 1637-1648.
  • 9Sanjay K S, Kirat P, Madhav J N. Fuzzy edge detection based on maximum entropy thresholding [ J ]. IETE Jour- nal of Research ,2011,57 (4) :325 -330.
  • 10Li C R,Li J P,Huang M Q. Alumina ceramic surface defect detection: combining canny edge detector and con tourlet transformation [ J ]. International Journal of Advancements in Computing Technology,2012,4(5) :131-140.

引证文献5

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部