期刊文献+

大气泡散射的几何物理模型数值计算 被引量:6

Numerical calculation of light scattering caused by large spherical bubbles with geometrical-physical model
在线阅读 下载PDF
导出
摘要 米氏模型和德拜级数展开模型在气泡尺寸达到μm量级时不能很好地解释海水中大尺寸空泡的后向散射现象,计算速度较慢且容易溢出。提出使用几何物理光学模型解释大尺寸空泡的后向散射现象,给出了一种基于几何物理光学模型的球形大气泡散射特性的数值计算方法,并与德拜级数展开式进行了比较,计算结果基本吻合。该方法在计算大尺寸空泡的后向散射时不受微粒尺寸参数和折射率的限制,且避免了复杂的级数形式,与基于米散射理论或德拜级数展开的算法相比,具有更快的运算速度。最后给出了一些计算实例。 Since Mie model and Debye-series expansion model can not accurately explain the back scattering phenomenon of large dimensional bubbles in seawater when the size of the bubbles reaches micron order of magnitude and their calculation speeds are slow,a geometrical-physical optical model is put forward.The numerical calculation method of the scattering property for the large spherical bubbles,based on geometrical-physical optical model, is described.In comparison with Debye model,the calculation result of the geometrical-physical optical model agrees with Debye model basically.The calculation process of the method is independent of size parameters,and it is more stable and faster than the traditional methods based on Lorenz-Mie theory or Debye-series expansion.Some calculation results for the angular distributions of the scattering intensity are also given.
出处 《应用光学》 CAS CSCD 2006年第6期539-542,共4页 Journal of Applied Optics
基金 兵器预研基金项目
关键词 几何物理模型 米氏散射 空泡 geometrical-physical theory Mie scattering bubble
  • 相关文献

参考文献10

  • 1[1]GARY M H.Mie scattering as a technique for the sizing of air bubble[J].Appl Opt,1985,24(19):3214-3220.
  • 2[2]GAU Tsai-sheng,CHEN Chun-kuang,LIN B J.Image characterization of bubbles in water for 193 nm immersion lithography-far-field approach[J].J Microlith,Microfab,Microsyst,2004,3(1):61-67.
  • 3[3]KURT O G,CHRISTOPHER D F,SONKE J,et al.Distribution,spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts[J].Experimental Eye Research,2004,79(4):563-576.
  • 4[4]LAVEN P.The optics of a water drop:Mie scat-tering and the Debye series[OL].http://www.philiplaven.com/index1.htm,2002-11-13.
  • 5[5]WISCOMBE W J.Improved Mie scattering algo-rithms[J].Appl Opt,1980,19(9):1505-1509.
  • 6[10]UNGUT A,GREHAN G,GOUESBET G.Com-parisons between geometrical optics and Lorenz-Mie theory[J].Appl Opt,1981,20(17):2911-2918.
  • 7[11]BOHREN C F,HUFFMAN D R.Absorption and scattering of light by small particles[M].New York:John Wiley & Sons,1983.
  • 8[12]EDWARD A H,JAMES A L.Assessing the con-tributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series[J].J Opt Soc Am A,1992,9(5):781-795.
  • 9[13]ZHOU Xiao-bing,LI Shu-sun,STAMNES K.Geometrical-optics code for computing the optical properties of large dielectric spheres[J].Appl Opt,2003,42(21):4295-4306.
  • 10[14]LI Xu-dong,YANG Hong-ru,WU Lei,et al.Study of the laser scattering effect on the bubbles in ocean[J].SPIE,2006,6150:615054-1-9.

同被引文献33

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部