期刊文献+

改进遗传算法求解柔性job-shop调度问题 被引量:5

Modified genetic algorithms solving flexible job-shop scheduling problems
在线阅读 下载PDF
导出
摘要 本文提出了一种改进遗传算法用于求解柔性作业调度问题 (FJSP) .针对工序在不同的机器上加工的差异性 ,我们提出了用能力系数来表征机器的加工能力 ,不仅可以简化处理而且也较为符合实际情况 .该改进算法通过轮换的方法 ,将加工任务分配到不同的并行机器上去执行 ,有利于机器的负载平衡 .同时 ,在方法的实现过程中 ,利用面向对象的思想 ,将问题进行抽象 ,用不同的类封装车间 ,机器和工序信息 ,这不仅符合现代编程风格 ,简化编程 ,也有利于系统的扩展和重构 .仿真结果表明 ,不仅整个加工过程的执行时间得到了优化 ,而且各类机器完成的操作数相同 ,使用的时间也较为平均 ,达到了设计目标 .同时该方法的计算速度也较快 。 In this paper, modified genetic algorithms for solving flexible job shop scheduling problems (FJSP) are proposed. As the difference of the working procedure on different machines is concerned, we have proposed capacity coefficients, which describe the processing capacity of the machine. We distribute the tasks to different machines by rotation, which benefits for load balance. Considering object oriented, we encapsulate shop, machine and working procedure to different classes, which benefit for system extension and re building. It also simplifies the programming. The simulation results show that not only the whole processing time has been optimized, but also the differences of operations and occupied time on each machine are very little. At the same time the algorithm has a high calculation speed that is fit for large scale scheduling problem.
作者 赵巍 王万良
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第z1期120-123,共4页 Journal of Southeast University:Natural Science Edition
基金 国家 8 63计划资助项目 ( 2 0 0 2AA412 610 ) 浙江省科技计划资助项目 ( 0 12 0 47) 国家自然科学基金资助项目
关键词 遗传算法 生产调度 柔性job-shop调度 genetic algorithm production scheduling flexible job shop scheduling
  • 相关文献

参考文献4

  • 1[2]Chambers J B, Barnes J W. Tabu search for the flexible-routing job shop problem [R]. Austin: Technical Report Series ORP 96-10, Department of Mechanical Engineering, the University of Texas at Austin,1996.
  • 2[3]Jansen K, Solis-Oba R, Sviridenko M I. A linear time approximation scheme for the job shop scheduling problem [A]. In: Dorit S Hochbaum, Klaus Jansen, Jose D P Rolin, Alistair Sinclair, eds. Proceedings of the Second International Workshop on Approximation Algorithms (APPROX 99) [C]. Berkeley: Springer,1999. 177-188.
  • 3[5]Gen M, Tsujimura Y, Kubota E. Solving job-shop scheduling problem using genetic algorithm [A]. In: Gen, Kobayashi eds. Proceedings of the 16th International Conference on Computers and Industrial Engineering [C]. Ashikaga, Japan,1994. 576-579.
  • 4[6]Cheng R, Gen M, Tsujimura Y. A tutorial survey of job-shop scheduling problems using genetic algorithms, part I Representation [J]. Computers & Industrial Engineering, 1996, 30(4): 983-997.

同被引文献93

引证文献5

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部