期刊文献+

基于可传递信度模型的自适应k-NN分类器 被引量:1

An Adaptive k-NN Classifier Based on the Transferable Belief Model
在线阅读 下载PDF
导出
摘要 针对训练模式类标签不精确的识别问题,提出了基于可传递信度模型(TBM)的自适应k-NN分类器,它通过运用pignistic变换,可以方便地对待识别模式真正所属的类做出决策,并通过梯度下降来最小化训练模式的输出类标签与目标类标签之间的误差函数,以实现参数的自适应学习.实验表明,该分类器用于处理训练模式类标签不精确的模式识别问题是有效的,且与参数优化前的基于TBM的k-NN分类器相比,其误分类率更低、鲁棒性更强. For processing training patterns with imprecise class labels, an adaptive fuzzy k-nearest neighbor classifier based on the transferable belief model(TBM) is presented in the paper. It's convenient to make decision about the true class membership of a pattern to be classified through the application of the pignistic transformation. And the parameters in the classifier are tuned automatically by minimizing an error function between the output class labels and target class labels of the training patterns through gradient descent. The experimental results show that the proposed classifier is valid to be applied to processing training patterns with imprecise class labels. Compared with the k-NN classifier based on the TBM without the parameter optimization, the proposed classifier appears to have lower classification error rates and higher robustness.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第z1期239-243,共5页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60663007) 江西师范大学青年成长基金项目(1731)
关键词 TBM 自适应 k-NN分类器 pignistic概率 梯度下降 the transferable belief model adaptive k-NN classifier pignistic probability gradient descent
  • 相关文献

参考文献10

  • 1[1]P Smets.The transferable belief model and other interpretations of Dempster-Shafer's model.The 6th Conf on Uncertainty in Artificial Intelligence,Cambridge,1990
  • 2[2]P Smets,R Kennes.The transferable belief model.Artificial Intelligence,1994,66(3):191-234
  • 3[4]G Shafer.A Mathematical Theory of Evidence.Princeton,NJ:Princeton University Press,1976
  • 4[6]J Francois,Y Grandvalet,T Denoeux,et al.Resample and combine:An approach to improving ncertainty representation in evidential pattern classification.Information Fusion,2003,4(2):75-85
  • 5[7]S Petit-Renaud,T Denoeux.Nonparametric regression analysis of uncertain and imprecise data using belief functions.Int'l Journal of Approximate Reasoning,2004,35(1):1-28
  • 6[8]T Denoeux.Application of evidence theory to k-NN pattern classification.In:E S Gelsema,L-N Kanal,eds.Pattern Recognition in Practice IV.Amsterdam:Elsevier,1994.13-24
  • 7[9]T Denoeux.Analysis of evidence-theoretic decision rules for pattern classification.Pattern Recognition,1997,30(7):1095-1107
  • 8[10]L M Zouhal,T Denoeux.An adaptive k-NN rule based on Dempster-Shafer theory.In:Proc of the 6th Int'l Conf on Computer Analysis of Images and Patterns (CAIP'95).Berlin:Springer-Verlag,1995.310-317
  • 9[11]L M Zouhal,T Denoeux.An evidence-Theoretic k-NN rule with parameter optimization.IEEE Trans on System Man Cybern-Part C,1998,28(2):263-271
  • 10[12]P Smets.The combination of evidence in the transferable belief model.IEEE Trans on Pattern Analysis and Machine Intelligence,1990,12(5):447-458

同被引文献6

  • 1Smets P, Kennes R. The Transtbrable Belief Model[J], Artificial Intelligence, 1994, 66(3): 191-234.
  • 2Shafer G. A Mathematical Theory of Evidence[M], Princeton, NJ, USA: Princeton University Press, 1976.
  • 3Francois J, Grandvalet Y, Denoeux T, et al. Resample and Combine: An Approach to Improving Uncertainty Representation in Evidential Pattern Classification[J]. Information Fusion, 2003, 4(2): 75-85.
  • 4Petit-Renaud S, Denoeux T. Nonparametric Regression Analysis of Uncertain and Imprecise Data Using Belief Functions[J]. International Journal of Approximate Reasoning, 2004, 35(1): 1-28.
  • 5Smets E The Combination of Evidence in the Transferable Belief Model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(5): 447-458.
  • 6刘邱云,付雪峰,吴根秀.可传递信度模型上的Rough算子及其应用[J].江西师范大学学报(自然科学版),2008,32(2):246-248. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部