期刊文献+

基于支持向量机和k-近邻分类器的多特征融合方法 被引量:14

Multi-feature fusion method based on support vector machine and k-nearest neighbor classifier
在线阅读 下载PDF
导出
摘要 针对传统分类方法只采用一种分类器而存在的片面性,分类精度不高,以及支持向量机分类超平面附近点易错分的问题,提出了基于支持向量机(SVM)和k-近邻(KNN)的多特征融合方法。在该算法中,设样本集特征可分为L组,先用SVM算法根据训练集中每组特征数据构造分类超平面,共构造L个;其次用SVM-KNN方法对测试集进行测试,得到由L组后验概率构成的决策轮廓矩阵;最后将其进行多特征融合,输出最终的分类结果。用鸢尾属植物数据进行了数值实验,实验结果表明:采用基于SVM-KNN的多特征融合方法比单独使用一种SVM或SVM-KNN方法的平均预测精度分别提高了28.7%和1.9%。 The traditional classification methods only use one single classifier,which may lead to one-sidedness,low accuracy,and that the samples nearby the Support Vector Machine(SVM) hyperplanes are more easily misclassified.To solve these problems,the multi-feature fusion method based on SVM and K-Nearest Neighbor(KNN) classifiers was presented in this paper.Firstly,the features were divided into L groups and the SVM hyperplanes were constructed for each feature of training set.Secondly,the testing set was tested ...
作者 陈丽 陈静
出处 《计算机应用》 CSCD 北大核心 2009年第3期833-835,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(10871022)
关键词 支持向量机 K-近邻 多特征融合 后验概率 Support Vector Machine(SVM) K-Nearest Neighbor(KNN) algorithm multi-feature fusion inverse probability
  • 相关文献

参考文献3

二级参考文献31

  • 1King Irwin,lin Zhong,Chan David Yuk-Ming.Chinese cursive script character image retrieval based on an integrated probability function.In:Laurini R.ed..Lecture Notes in Computer Science 1929,Berlin:Spring-Verlag,2000,530-539.
  • 2King Irwin,Jin Zhong.Integrated probability function and its application to content-based image retrieval by relevance feedback.Pattern Recognition,2003,36(9):2177-2186.
  • 3Lin Xiao-Fan,Ding Xiao-Qing,Chen Ming,Zhang Rui,Wu You-Shou.Adaptive confidence transform based classifier combination for Chinese character recognition.Pattern Recognition Letters,1998,19(10):975-988.
  • 4Smith S.J.,Bourgoin M.O.,Sims K.,Voorhees H.L..Handwritten character classification using nearest neighbor inlarge databases.IEEE Transactions on Pattern Analysis and Machine Intellegence,1994,16(9):915-919.
  • 5Lam L.,Suen C.Y..A theoretical analysis of application of majority voting to pattern recognition.In:Proceedings of International Conference on PRCV.1994,418-420.
  • 6Xu L.,Suen C.Y..Methods of combing multiple classifiersand their application to handwriting recognition.IEEE Transactions on Systems,Man and Cybernetics,1992.22(3):418-435.
  • 7Hashem,Schmeiser B..Improving model accuracy using optimal linear combinations of trained neural networks.IEEE Transactions on Neural Networks,1995,6(3):792-794.
  • 8Kittler J.et a1..Combining evidence in personal identity verification systems.Pattern Recognition Letters,1997,18(9):845-852.
  • 9Dempster A.P.,A generalization of Bayesian inference.Journal of the Royal Statistical Society(Series B),1986.30.
  • 10Cho S.B.,Kim J.H..Combining multiple neural networks by fuzzy integral for robust classification.IEEE Transactions on Systems,Man and Cybernetics,1995,25(2):380-384.

共引文献14

同被引文献125

引证文献14

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部