期刊文献+

Clifford algebra approach to pointwise convergence of Fourier series on spheres Dedicated to Professor Sheng GONG on the occasion of his 75th birthday 被引量:3

Clifford algebra approach to pointwise convergence of Fourier series on spheres Dedicated to Professor Sheng GONG on the occasion of his 75th birthday
原文传递
导出
摘要 We offer an approach by means of Clifford algebra to convergence of Fourier series on unit spheres of even-dimensional Euclidean spaces. It is based on generalizations of Fueter's Theorem inducing quaternionic regular functions from holomorphic functions in the complex plane.We, especially, do not rely on the heavy use of special functions. Analogous Riemann-Lebesgue theorem, localization principle and a Dini's type pointwise convergence theorem are proved. We offer an approach by means of Clifford algebra to convergence of Fourier series on unit spheres of even-dimensional Euclidean spaces. It is based on generalizations of Fueter's Theorem inducing quaternionic regular functions from holomorphic functions in the complex plane. We, especially, do not rely on the heavy use of special functions. Analogous Riemann-Lebesgue theorem, localization principle and a Dini's type pointwise convergence theorem are proved.
出处 《Science China Mathematics》 SCIE 2006年第11期1553-1575,共23页 中国科学:数学(英文版)
关键词 CLIFFORD algebra POINTWISE convergence of Fouirer series unit sphere Fueter's Theorem. Clifford algebra, pointwise convergence of Fouirer series, unit sphere, Fueter's Theorem.
  • 相关文献

参考文献23

  • 1[1]Zygmund A.Trigonometric Series,Vol 2.2nd ed,Cambridge:Cambridge Univ Press,1959
  • 2[2]Carleson L.On convergence and growth of partial sums of Fourier series.Acta Math,1966,116:135-157
  • 3[3]Hunt A.On the convergence of Fourier series,orthogonal expansions and their continuous analogues.In:Proc Conf Edwardsville I11 1967.Carbondale:Southern Illinois Univ Press,Carbondale,1968,235-255
  • 4[4]Roetman E L.Pointwise convergence for expansios in surface harmonics of arbitrary dimension.J Reine Angew Math,1976,282:1-10
  • 5[5]Wang K Y,Li L Q.Harmonic analysis and approximation on the unit sphere.Beijing/New York:Science Press,2000
  • 6[6]Dirichlet P G L.Sur les séries dont le terme général dépend de deux angle,et qui serventá exprimer des fonctions arbitraires entre des limites données.J Reine Angew Math,1873,17:35-56
  • 7[7]Meaney C.Divergence Jacobi polynomial series.Proceedings of the American Mathematical Society,1983,87(3):459-462
  • 8[8]Qian.T.Singular integrals on star-shaped Lipschitz surfaces in the quaternionic space.Math Ann,1998,310(4):601-630
  • 9[9]Qian T.Fourier analysis on star-shaped Lipschitz surfaces.J of Func Anal,2001,183:370-412
  • 10[10]Liu S,Qian T.Pointwise convergence of Fourier series on the unit sphere of R4 with Quaternionic setting.Trends in Mathematics:Advance in Analysis and Geometry.Basel:Birkh(a)user,2004,131-147

同被引文献6

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部