期刊文献+

基于信息论分析的多尺度图像去噪方法 被引量:1

Multiscale image denoising method based on information-theoretic analysis
在线阅读 下载PDF
导出
摘要 图像多尺度统计相关模型的信息论分析表明,尺度内模型可以捕捉小波系数间的大部分相关性,较尺度间模型携带更多的信息,而通过加入父信息得到的增益则较小.为充分利用各模型提供的不同信息,提出一种基于信息融合的多尺度去噪方法,将尺度内和尺度间相关模型的优点相结合,并压制各自的缺陷.仿真结果表明,基于信息融合的方法具有更好的视觉效果和去噪性能. The information-theoretic metrics evaluate the abilities of multiscale image statistical models to capture dependencies between wavelet coefficients, which indicates that intrascale model could describe most of dependencies that are more than interscale model, and the gains is small by adding parent information. To fully exploit the information provided by interscale and intrascale model, a novel multiscale image denoising method based on image fusion is proposed, which combines high denoising ability of intrascale statistical model with better performance of edge preservation of interscale model. Simulation results show that the proposed method has better visual effect and high denoising quality.
出处 《海军航空工程学院学报》 2006年第3期353-356,360,共5页 Journal of Naval Aeronautical and Astronautical University
关键词 互信息 尺度内相关 尺度间相关 混合相关 隐马尔可夫树 高斯比例混合 信息融合 mutual information intrascale dependency interscale dependency composite dependency HMT GSM image fusion
  • 相关文献

参考文献12

  • 1[1]Shapiro J M.Embedded image coding using zerotrees of wavelet coefficients[J].IEEE Trans.Signal Proc.,1993,41(12):3445-3462
  • 2[2]Crouse.M S,Nowak R D,Baraniuk R G.Wavelet-based statistical signal processing using hidden Markov models[J].IEEE Trans.Signal Processing,1998,46 (4):886-902
  • 3[3]Romberg J K,Choi H,Baraniuk R.Bayesian Tree-structured image modeling using wavelet domain hidden Markov models[J].IEEE Trans.Image Processing,2001,10(7):1056-1068
  • 4高学强 ,李振杰 ,芮国胜 ,赵晶 .基于提升方案的无损图像压缩系统的DSP实现[J].海军航空工程学院学报,2004,19(5):569-572. 被引量:2
  • 5[5]LoPresto S,Ramchandran K,Orchard M T.Image coding based on mixture modeling of wavelet coefficients and a fast estimation-quantization framework[C]//Data Compression Conference'97.(Snowbird,Utah),1997:221-230
  • 6[6]Zhang H,Nosratinia A,Wells R O.Image denoising via wavelet-domain spatially adaptive FIR Wiener filtering[C]//Proc.IEEE ICASSP.Istanbul,Turkey,2000,5:2179-2182
  • 7[7]Mihcak M K,Kozintsev I,Ramchandran K,et al.Low-complexity image denoising based on statistical modeling of wavelet coefficients[J].IEEE SP.Letters,1999,6(12):300-303
  • 8[8]Pizurica A,Philips W,Lemahieu I,Acheroy M.A joint inter-and intrascale statistical model for Bayesian wavelet based image Denoising[J].IEEE Trans.Image Proc.,2002,11(5):545-557
  • 9[9]Portilla J,Strela V,Wainwright M,Simoncelli E.Image denoising using scale mixture of Gaussians in the wavelet domain[J].IEEE.Trans.Image Proc.2001,12(11):1338-1351
  • 10[10]Fan G,Xia X G.Image denoising using local contextual hidden Markov model in the wavelet domain[J].IEEE Signal Processing Letters,2001,8:125-128

二级参考文献7

共引文献1

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部