期刊文献+

基于主成分分析提升朴素贝叶斯 被引量:7

Improving Performance of Naive Bayes by Principal Component Analysis
在线阅读 下载PDF
导出
摘要 在特征属性相对于类属性统计独立时,朴素贝叶斯能达到最优的分类效率。但该条件独立性假设在许多现实问题中并不成立,这将在某种程度上影响预测准确度。这里结合主成分分析(PCA)对原始数据进行预处理,消除噪声并使数据分布具有一定程度的独立特性。在U CI数据集上分别从独立性和预测准确度方面进行了验证,取得了良好的效果。 Naive Bayes is known to be optimal if predictive attributes are independent given the class.But the conditional independence assumption is rarely valid in practical learning problems and when violated,the classification performance may be affected to some extent.The principal component analysis (PCA) is used to make data set have some independence characteristics and remove noise from data.Experimental results on a variety of UCI data sets suggest great improvement from the viewpoint of prediction accuracy and independence assumption,respectively.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2004年第z3期384-386,共3页 Chinese Journal of Scientific Instrument
关键词 模式识别 朴素贝叶斯 条件独立性假设 PCA Pattern recognition Naive Bayes Conditional independence assumption PCA
  • 相关文献

参考文献8

  • 1[1]Friedman N,Geiger D,Goldszmidt M. Bayesian network classifiers. Machine Learning, 1997,29:131~ 163.
  • 2[2]Cooper G. Computational complexity of probabilistic inference using bayesian belief netwoks. Antificial Intelligence, 1990,42: 393 ~ 405.
  • 3[3]Clark P,Niblett T. The CN2 induction algorithm. Machine Learning, 1989,3: 261 ~ 83.
  • 4[4]Kohavi R, Becker B, Sommerfield D. Improving simple Bayes. Proceedings of theEuropean Conference on Machine Learning, 1997,78~ 87.
  • 5[5]Iba W,Thompson K. An analysis of Bayesian classifiers.Proceedings of the 10th National Conference on Artificial Intelligence, 1992,223~228.
  • 6[6]Langley P,Sage S. Induction of selective Bayesian classifiers. Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence, 1994,399~406.
  • 7[7]Kononenko I. Inductive and Bayesian learning in medical diagnosis. Applied Artificial Intelligence, 1993,7: 317~337.
  • 8[8]Wan S J,Wong S K. A measure for concept dissimilarity and its applications in machine learning. Proceedings of the International Conference on Computing and Information, 1989,267~273.

同被引文献41

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部