期刊文献+

Information flow and controlling in regularization inversion of quantitative remote sensing 被引量:12

Information flow and controlling in regularization inversion of quantitative remote sensing
原文传递
导出
摘要 In order to minimize uncertainty of the inversed parameters to the largest extent by making full use of the limited information in remote sensing data, it is necessary to understand what the information flow in quantitative remote sensing model inversion is, thus control the information flow. Aiming at this, the paper takes the linear kernel-driven model inversion as an example. At first, the information flow in different inversion methods is calculated and analyzed, then the effect of information flow controlled by multi-stage inversion strategy is studied, finally, an information matrix based on USM is defined to control information flow in inversion. It shows that using Shannon entropy decrease of the inversed parameters can express information flow more properly. Changing the weight of a priori knowledge in inversion or fixing parameters and partitioning datasets in multi-stage inversion strategy can control information flow. In regularization inversion of remote sensing, information matrix based on USM may be a better tool for quantitatively controlling information flow. In order to minimize uncertainty of the inversed parameters to the largest extent by making full use of the limited information in remote sensing data, it is necessary to understand what the information flow in quantitative remote sensing model inversion is, thus control the information flow. Aiming at this, the paper takes the linear kernel-driven model inversion as an example. At first, the information flow in different inversion methods is calculated and analyzed, then the effect of information flow controlled by multi-stage inversion strategy is studied, finally, an information matrix based on USM is defined to control information flow in inversion. It shows that using Shannon entropy decrease of the inversed parameters can express information flow more properly. Changing the weight of a priori knowledge in inversion or fixing parameters and partitioning datasets in multi-stage inversion strategy can control information flow. In regularization inversion of remote sensing, information matrix based on USM may be a better tool for quantitatively controlling information flow.
出处 《Science China Earth Sciences》 SCIE EI CAS 2005年第1期74-83,共10页 中国科学(地球科学英文版)
基金 This work was supported by the Special Funds for the Major State Basic Research Project(Grant No.G2000077903) the National Natural Science Foundation of China(Grant No.40171068).
关键词 REGULARIZATION inversion INFORMATION flow Shannon ENTROPY decrease INFORMATION matrix. regularization inversion, information flow, Shannon entropy decrease, information matrix.
  • 相关文献

参考文献3

  • 1Li Xiaowen,Gao Feng,Wang Jindi,A. H. Strahler,W. Lucht,C. Schaaf.Estimation of the parameter error propagation in inversion based BRDF observations at single sun position[J].Science in China Series E: Technological Sciences.2000(1)
  • 2李小文,王锦地,胡宝新,AlanH.Strahler.On utilization of a priori knowledge in inversion of remote sensing models[J].Science China Earth Sciences,1998,41(6):580-585. 被引量:10
  • 3Fraiture,L.The information dilution theorem[].ESA J.1986

二级参考文献12

  • 1YuT,TianGL.TheapplicationofthermalinertiamethodthemonitoringofsoilmoistureofNorthChinaPlainbasedonNOAA AVHRRdata. JournalofRemoteSensing . 1997
  • 2LiXiaowen,WangJindi.Multiangularremotesensinganditsapplication. RemoteSensinginChina . 1996
  • 3Li,X,Yan,G,Liu,Y .etal.UncertaintyandsensitivitymatrixofparametersininversionofphysicalBRDFmodel. JournalofRemoteSensingoftheFirstInternationalWorkshoponMultiangularRemoteSensing . 1997
  • 4Tarantola,A.InverseProblemTheoryMethodsforDataFittingandModelParameterEstimation. . 1987
  • 5Neapolitan,R .E.ProbabilisticReasoninginExpertSystemTheoryandAlgorithms. . 1990
  • 6Li,X .W,Strahler,A .H.Geometric opticalbidirectionalreflectancemodelingofmutualshadowingeffectsofcrowninaforestcanopy. IEEETrans.onGARS . 1992
  • 7Wan,Z,Li,Z.Aphysics basedalgorithmforretrievingland surfaceemissivityandtemperaturefromEOS/MODISdata. IEEETrans.onGeoscienceandRemoteSensing . 1997
  • 8LiXiaowen,,NiWenge.Fusionofmultiangularandimagingspectrometerdata. Proc.ofGIS ,AM /FMAsia’’97&Geoinformatics’’97 . 1997
  • 9LiXiaowen,WangJindi.CanopyReflectanceModels,Inversion,andCharacterizationofCanopyStructure. . 1995
  • 10Iaquinta,J.,Pinty,B,Privette,J.L.Inversionofaphysicallybasedbidirectionalreflectancemodelofvegetation. IEEETrans.onGeoscienseandRemoteSensing . 1997

共引文献9

同被引文献158

引证文献12

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部