摘要
Anion starch nanoparticle (StNP) with a diameter of 50 nm was prepared in wa- ter-in-oil microemulsion, with soluble starch as raw materials and POCl3 as crosslinking agent. PLL-StNP was prepared by linking poly-L-lysine (PLL) on the surface of StNP. At the same time, the size of PLL-StNP and its stability in aqueous solution were checked by AFM. The analysis of plasmid DNA binding, DNase I enzymatic degradation, toxicity and transfection were done. We discovered that PLL-StNP may be used as non-virus nanoparticle gene carrier. And we devel- oped the method of preparing PLL-StNP gene carrier and used it in cell transfection. As non-virus gene carrier, PLL-StNP has some advantages, such as large load of DNA, high transfection effi- ciency, low cell toxicity and biodegradability.
Anion starch nanoparticle (StNP) with a diameter of 50 nm was prepared in wa- ter-in-oil microemulsion, with soluble starch as raw materials and POCl3 as crosslinking agent. PLL-StNP was prepared by linking poly-L-lysine (PLL) on the surface of StNP. At the same time, the size of PLL-StNP and its stability in aqueous solution were checked by AFM. The analysis of plasmid DNA binding, DNase I enzymatic degradation, toxicity and transfection were done. We discovered that PLL-StNP may be used as non-virus nanoparticle gene carrier. And we devel- oped the method of preparing PLL-StNP gene carrier and used it in cell transfection. As non-virus gene carrier, PLL-StNP has some advantages, such as large load of DNA, high transfection effi- ciency, low cell toxicity and biodegradability.