摘要
Four phenoxysilicon networks for nonlinear optical (NLO) applications were designed and prepared by an extended sol-gel process without additional H2O and catalyst. All poled polymer network films possess high second-order nonlinear optical coefficients (d(33)) Of 10(-7)similar to 10(-8) esu. The investigation of NLO temporal stability at room temperature and elevated temperature (120 degreesC) indicated that these films exhibit high d(33) stability because the orientation of the chromophores are locked in the phenoxysilicon organic/inorganic networks.
Four phenoxysilicon networks for nonlinear optical (NLO) applications were designed and prepared by an extended sol-gel process without additional H2O and catalyst. All poled polymer network films possess high second-order nonlinear optical coefficients (d(33)) Of 10(-7)similar to 10(-8) esu. The investigation of NLO temporal stability at room temperature and elevated temperature (120 degreesC) indicated that these films exhibit high d(33) stability because the orientation of the chromophores are locked in the phenoxysilicon organic/inorganic networks.
基金
国家自然科学基金