期刊文献+

基于小波包变换与自适应阈值的ECG信号滤波算法研究 被引量:3

Based on Wavelet Packet Transform and Adaptive Threshold Algorithm for ECG Signal Filtering
在线阅读 下载PDF
导出
摘要 目的:在心电信号(ECG)的采集过程中,常常会受到噪声的影响,为了正确进行心电参数测量、波形识别和病情诊断,在低信噪微弱信号检测中必须要进行噪声抑制,提高信噪比。噪声的滤波处理是心电图分析的一个重要步骤。方法:本文提出了一种基于小波包变换及与分解层次相关的自适应阈值的去噪方法,利用小波包对心电信号进行分解,可以同时对信号的低频和高频部分进行分解,可以更好的保留原信号信息,减少噪声对信号的影响,同时对小波包树系数用自适应阈值进行软阈值处理,可以明显提高信噪比。结果:用本文提出的算法对心电信号进行滤波,确实提高了信噪比。得到比较优秀的去噪效果。结论:仿真实验表明,本文提出的算法滤噪效果优于小波去噪效果。 Objective:ECG(ECG) acquisition process,often subject to noise,in order to correctly measure the ECG parameters,waveform identification and disease diagnosis,in the low noise of weak signal detection in noise reduction must be carried out to improve the signal to noise ratio.Noise filtering is an important step in ECG analysis.Methods:This paper presents a wavelet packet transform and decomposition level associated with the adaptive threshold denoising method.The use of wavelet packet decomposition of ECG si...
作者 车琳琳 宋莉
出处 《中国医学物理学杂志》 CSCD 2011年第1期2411-2413,2417,共4页 Chinese Journal of Medical Physics
关键词 心电信号 滤波 小波包算法 ECG filter wavelet packet
  • 相关文献

参考文献5

二级参考文献28

  • 1杨永明,路陈红.小波包分析在一维及二维信号去噪中的应用[J].西安建筑科技大学学报(自然科学版),2004,36(3):364-367. 被引量:11
  • 2赵永韬,王昱,郭兴蓬.基于小波的恒电量瞬态响应信号的滤波处理[J].物理化学学报,2005,21(9):1017-1021. 被引量:6
  • 3中山大学数学力学系.概率论及数理统计[M].北京:人民教育出版社,1985..
  • 4[1]B维德罗等著.自适应信号处理[M].王永德译.成都:四川人民出版社,1991.
  • 5[2]Christiane Antweiler, Jorn Grunwald and Holger Quack. Approximatio n of optimal step size control for acoustic echo cancellation. ICASSP 1997,Apr(1):295-298.
  • 6[5]Abreu E., lightstone M., Mitra S. K. and Arakawa K. A new effi cient approach for the removal of impulse noise from highly corrupted images[J ]. IEEE Tran. on Image Proc., June 1996, 5(6):1012-1025.
  • 7[6]Zhang D. and Wang D. Impulse noise detection and removal using fu zzy techniques[J]. IEE Electronics Letters, Feb.1997, 33(5): 378-379.
  • 8[8]Coifman R R. Adapted multiresolution analysis, computation, signal processing and operator theory[M]. Proceeding of the International Congress o f Mathematicians, Kyoto, Math Soc Japan, 1990. 887-897
  • 9[12]Donoho and Johnstone. Ideal spatial adaptation by wavelet shrinka ge[J]. Biometrika, 1994, 81(3): 425-455.
  • 10[13]Daubechies I. Orthonormal bases of compactly supported wavelets [J]. Commun. Pure Appl. 1998, 41: 909-996.

共引文献64

同被引文献29

  • 1姚成,司玉娟,郎六琪,程延伟,李贺佳,臧国华.基于提升小波的心电信号P、T波检测快速算法[J].吉林大学学报(工学版),2013,43(S1):177-182. 被引量:8
  • 2Anlonio J J. Ferndndez D. Evaluation of Bluetoolh tow energy capabilities for continuous data transmission from a wearable electrocardiogram [ C ] //lnternalional Conference on Innovalive Mobile and Internet Services in Ubiquitous Compuling.lEEE,2012:912- 917.
  • 3MANIKANDAN M S,SOMAN K P. A novel method for detecting R-peaks in eteetrocardiogram (ECG)signal[J]. Biomedical Signal Processing and Control, 2012, 7(2): 118-128.
  • 4PAL S, MITRA M. Empirical mode decomposition based enhancement and ORS detection[J]. Computers in biology and medicine, 2012, 42(1): 83-92.
  • 5SINDHU M, BIRADAR S, HKREMATH S G. Wavelet transform based neural network algorithm for detection and characterization of ECG signal[J].International Journal of Scientific Research and Education,2014,2(07).
  • 6RANJAN R, GIRI V K. A Unified Approach of ECG Signal Analysis [J]. International Journal of Soft Gomputing and Engineering (IJSCE), 2012, 2(3).
  • 7ZHU C, TIAN F. An ECG deteetion algorithm using wavelet and autocorrelation transform [C]//2013 International Conference on Wireless Communications Signal Processing (WCSP). IEEE, 2013: 1-6.
  • 8KIM M S, CHO Y C, SEO S T, et al. A new method of ECG feature detection based on combined wavelet transform for u-health service[J].Biomedical Engineering Letters, 2011, 1(2) : 108-115.
  • 9LU Y, YAN J, YAM Y. Model-based ECG denoising using empirical mode decomposition[C]//BIBM'09. IEEE Intenmtional Conference on Bioinformatics and Biomedicine, 2009. IEEE, 2009:191-196.
  • 10高莉,黄力宇.基于自适应梯度盲源分离算法的胎儿心电提取[J].仪器仪表学报,2008,29(8):1756-1760. 被引量:12

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部