期刊文献+

随机激励下铝蜂窝夹层板非线性特性研究

Nonlinear dynamic analysis of aluminum honeycomb sandwich board based on random excitation
在线阅读 下载PDF
导出
摘要 为研究铝蜂窝夹层板的非线性动力学特性,对铝蜂窝夹层板做不同激振量级下的随机振动试验,并作出非线性幅频图。系统的非线性频响函数的共振放大倍数随着激振量级的增加而减小,其特征与应用等效线性化及FPK法计算的带有非线性阻尼的系统理论得出的结果相似,拟合结果也表明试件的等效阻尼系数随外激励变化而变化,故得出文章中的试件带有非线性阻尼特性。铝蜂窝夹层板具有非线性阻尼特性这一结果可对航天器建模提供理论参考依据。 The nonlinear dynamic characteristics of aluminum honeycomb sandwich board, as a widely used compound material in spacecraft, are studied in this paper. With random vibration tests in different test levels, nonlinear frequency response functions (FRF) are obtained; and it is shown that as the excitation level increases, the FRF decreases in magnitude, and the damping ratio increases, which is consistent with the model with nonlinear damping, with FPK transform and equivalent principle method being combined. That reveals the nonlinear damping characteristics in aluminum honeycomb sandwich board. This study provides a theoretical guidance in choosing a model for a nonlinear dynamic system.
出处 《航天器环境工程》 2009年第2期143-146,98,共4页 Spacecraft Environment Engineering
基金 国家863计划基金资助项目(2007AA702202)
关键词 随机激励 铝蜂窝板 非线性特性 等效线性化法 非线性阻尼 random excitation aluminum honeycomb sandwich board nonlinear dynamic characteristics equivalent linearization method nonlinear damping
  • 相关文献

参考文献8

二级参考文献15

  • 1陈昌亚,王德禹,王本利.动力学分析中铝蜂窝夹层板的等效问题[J].空间科学学报,2002,22(z2):142-148. 被引量:11
  • 2Yang Ping Zhong Yifang Zhou JiSchool of Mechanical Science and Engineering, Huazhong University of Science and Technology,Wuhan 430074, ChinaLiu Yong Guilin Institute of Electronic Technology.CAD/CAE OF THE WORKING CHARACTERISTICS OF A NEW TYPE OF FLUID COUPLING SHOCK ABSORBER[J].Chinese Journal of Mechanical Engineering,2002,15(3):222-227. 被引量:4
  • 3朱位秋.随机振动[M].北京:科学出版社,1998..
  • 4Chandra N,Shekhar,Hatwal H.Response of non-linear dissipative shock isolators[J].J.of Sound and Vibration,1998,214(4):589~603.
  • 5Dunne J F.Extreme-value prediction for non-linear stochastic oscillators via numerical solutions of the stationary FPK equation[J].Journal of Sound and Vibration,1997,206(5):697~724.
  • 6Liu X B,Liew K M.The Lyapunov exponent for a codimension two bifurcation system that is driven by a real noise[J].International Journal of Non-Linear Mechanics,2003,38(10); 1495~1511.
  • 7Ni Y Q,Ying Z G,Ko J M,Zhu W Q.Random response of integrable Duhem hysteretic systems under non-white excitation[J].International Journal of Non-Linear Mechanics,2002,37(8):1407~1419.
  • 8Ulyanov S V,Feng M.Stochastic analy sis of time-variant nonlinear dynamic systems.Part 1:The Fokker-PlanckKolmogorov equation approach in stochastic mechanics[J].Probabilistic Engineering Mechanics,1998,13(3):183~203.
  • 9Er Guo-Kang.Exponential closure method for some randomly excited non-linear systems[J].International Journal of Non-Linear Mechanics,2000,35(1):69~78.
  • 10Banik A K,Datta T K.Stochastic response and stability analysis of single leg articulated tower[C].Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE,2003,2:21~28.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部