期刊文献+

基于高斯混合模型的光照自适应背景减法 被引量:3

Background subtraction with light adaptation based on Gaussian mixture model
在线阅读 下载PDF
导出
摘要 采用带有光照自适应的基于高斯混合模型的背景减法提取移动物体的图像.通过只更新感兴趣的高斯分布减少运算量;对基于改进的高斯混合模型算法提取的图像,当光照快速变化时进行光照补偿.实验结果表明,改进的高斯混合模型算法,对光照快速变化的场景有较好的适应性,提取的图像效果较好. It presented a light adaptive background subtraction algorithms that based on Gaussian mixture model for detecting moving objects.By only updating interesting Gaussian distributions reduced the computation and then performed a illumination compensation for the background obtained from the model.The algorithm achieved a better adaptability in situation such as light mutation,also a better result and efficiency under some conditions compared with traditional Gaussian mixture model.
出处 《湖北大学学报(自然科学版)》 CAS 2012年第3期355-359,共5页 Journal of Hubei University:Natural Science
基金 国家自然科学基金(60973034)资助
关键词 高斯混合模型 光照突变 背景减法 感兴趣的高斯分布 背景的高斯分布 Gaussian mixture model light mutant background subtraction Gaussian distribution of interested Gaussian distribution of background
  • 相关文献

参考文献12

  • 1Stauffer C;Grimson W.Adaptive background mixture models for real-time tracking,1999.
  • 2Piccardi M.Background subtraction techniques:a review,2004.
  • 3Zivkovic Z.Improved adaptive gaussian mixture model for background subtraction,2004.
  • 4Shen C;Lin X;Shi Y.Moving object tracking under varying illumination conditions[J],2006(14).
  • 5Mcivor A.Background subtraction techniques,2000.
  • 6杨莉,张弘,李玉山.视频运动对象的自动分割[J].计算机辅助设计与图形学学报,2004,16(3):301-306. 被引量:37
  • 7刘洁,张东来.关于自适应高斯混合背景模型的更新算法的研究[J].微计算机信息,2006(08S):241-242. 被引量:23
  • 8李红宝,徐建闽,林培群,黄玲.交通视频背景估计动态高斯混合模型[J].交通信息与安全,2009,27(4):35-38. 被引量:1
  • 9Harville M.A framework for high-level feedback to adaptive,per-pixel mixture-of Gaussian background models,2002.
  • 10Cucchiara R;Piccardi M;Prati A.Detecting moving objects,ghosts,and shadows in video streams[J],2003(10).

二级参考文献25

  • 1王春波,张卫东,张文渊,许晓鸣.复杂交通环境中车辆的视觉检测[J].上海交通大学学报,2000,34(12):1680-1682. 被引量:17
  • 2徐君丽,刘冀伟,王志良,郭建波.基于无线网络的智能监控系统设计与实现[J].微计算机信息,2005,21(06S):5-7. 被引量:34
  • 3Triantafyllidis G A, Tzovaras D, Strintzis M G. Occlusion and visible background and foreground areas in stereo: a bayesian approaeh[J]. IEEE Transactions on Circuits and Systems for Video Technology,2000,10(4) :563-575.
  • 4Jung Y K, Ho Y S. Traffic parameter extraction using video-based vehicle tracking[C]// Proceedings of IEEE International Conference on Intelligent Transportation Systems, 1999.
  • 5Copeland B R, Chen M, Wade B D, et al. A noisedriven strategy for background estimation and event detection in data streams[J]. Signal Processing, 2006,86(12):3 739-3 751.
  • 6Bailo G, Bariani M, Ijas P, et al. Background estimation with gaussian distribution for image segmentation, a fast approach[C]// Proceedings of IEEE International Workshop on Measurement Systems for Homeland Security, 2005.
  • 7Lin P Q, Xu J M, Bian J Y. Robust vehicle detection in vision systems based on fast wavelet transform and texture analysis [C]// Proceedings of IEEE International Conference on Automation and Logistics, 2007.
  • 8Lucke R L, Stocker A D. Filtering interpolators for frame differencing signal processors [ J ]. IEEE Transactions on Signal Processing, 1993, 41 (8): 2 574-2 582.
  • 9Tanaka K, Saji H. Vehicle extraction from aerial images using voting process and frame matching [C]// Proceedings of IEEE Intelligent Vehicles Symposium, 2007.
  • 10Bhandarkar S M, Luo X Z. Fast and robust background updating for real-time traffic surveillance and monitoring [C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005.

共引文献61

同被引文献22

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部