期刊文献+

凝汽器端差偏高原因分析及处理措施 被引量:6

REASON ANALYSIS AND PROCESSING MEASURES FOR BIG TERMINAL TEMPERATURE DEVIATION IN CONDENSERS
在线阅读 下载PDF
导出
摘要 对某电厂4号600MW机组凝汽器端差高于3号机组进行了分析。结果表明,其主要原因是真空泵4A出力下降和闭式循环冷却水(闭冷水)温度偏高。真空泵4A叶轮汽蚀严重,部分叶片穿孔以及由汽蚀产生的铁屑积聚在真空泵板式冷却器表面,使其出力下降。将真空泵4A的叶轮及转子的材质由铸铁更换为不锈钢,在该机组的开式循环冷却水(开冷水)回路中加装1台开冷泵,并定期起动开冷泵对闭冷器进行反冲洗后,4号机组凝汽器端差较之前相同工况下降约1.5℃。 Output decrease of NO.4 A vacuum pump and temperature increase of the close-cycle cooling water are considered as the main reasons for problem takes place in a 600 MW level power plant which leads to the terminal temperature difference of condenser on NO.4 unit higher than that on NO.3.Serious cavitation occurs on impeller of NO.4 vacuum,and some blades perforate,moreover,iron filings caused by cavitation accumulate on the surface of plate cooler in vacuum pump.All these cause decrease of the pump output.Measurements such as changing the material of impeller and rotor on NO.4 A vacuum pump into stainless steel,installing an additional open-cycle cooling pump in the open-cycle cooling water loop of this unit,and starting the open-cycle cooling pump regularly to backwash the close-cycle cooler,can make the terminal temperature deviation drop by about 1.5 ℃,compared with that under the same condition.
出处 《热力发电》 CAS 北大核心 2012年第12期101-103,共3页 Thermal Power Generation
关键词 600 MW机组 凝汽器 端差 真空泵 闭冷水 开冷泵 600 MW unit condenser terminal temperature deviation vacuum pump close-cycle cooling water open-cycle cooling pump
  • 相关文献

同被引文献27

  • 1王浩,戴春喜,陶朝胜,于新颖,江浩.湿冷机组冷端系统节能诊断方法[J].热力发电,2013,42(12):13-16. 被引量:8
  • 2于新颖,居文平,杨寿敏.国产引进型300MW汽轮机组凝汽器冷却面积探讨[J].热力发电,2004,33(8):48-51. 被引量:9
  • 3任一峰,陈建生.大型机组凝汽器冷却面积合理选择[J].发电设备,2007,21(6):471-474. 被引量:3
  • 4Li C Z, Bartle K D, Kandiyoti R. Characterization of tars from variable heating rate pyrolysis of maceral concentrates[J]. Fuel, 1993,72 ( 1 ) : 3-11.
  • 5Zeng C,Chen L, Liu G, et al. Advances in the develop- ment of wire mesh reactor for coal gasification studies [J]. Review of Scientific Instruments, 2008,79 (8) : 1-5.
  • 6Griffin T P. Intraparticle secondary reactions of tar during bituminous coal pyrolysis[D]. Cambridge: De- partment of Chemical Engineering, Massachusetts In- stitute of Technology, 1989.
  • 7Vorres K S. The argonne premium coal sample pro- gram[J]. Energy & Fuels, 1990,4(5) :420-426.
  • 8Larsen J W,Schmidt T E. Proper laboratory storage of coals[J]. Fuel,1986,65(9):1310-1312.
  • 9Cai H Y, Guell A J, Chatzakis I N, et al. Combustion reactivity and morphological change in coal chars:effect of pyrolysis temperature, heating rate and pressure[J]. Fuel.1996.75(l):15-24.
  • 10Gibbins-Matham J, Kandiyoti R. Coal pyrolysis yields from fast and slow heating in a wire-mesh apparatus with a gas sweep[J]. Energy & Fuels, 1988,2 (4) : 505- 511.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部