摘要
在比较各种水文预报方法的基础上,研究利用一种改进的支持向量机算法(SVM)对水文进行预测。阐述支持向量机理论的理论基础和原理,针对缺陷,提出基于人工鱼群优化的支持向量机算法(AFSVM),介绍人工鱼群算法基本理论和AFSVM,建立基于人工鱼群优化的支持向量机的拉萨河水文预报系统模型,并与标准的支持向量机预测模型进行对比。实验结果表明,AFSVM与标准SVM模型的预测精度差不多,AFSVM的训练速度优于标准SVM训练速度。
在比较各种水文预报方法的基础上,研究利用一种改进的支持向量机算法(SVM)对水文进行预测。阐述支持向量机理论的理论基础和原理,针对缺陷,提出基于人工鱼群优化的支持向量机算法(AFSVM),介绍人工鱼群算法基本理论和AFSVM,建立基于人工鱼群优化的支持向量机的拉萨河水文预报系统模型,并与标准的支持向量机预测模型进行对比。实验结果表明,AFSVM与标准SVM模型的预测精度差不多,AFSVM的训练速度优于标准SVM训练速度。
出处
《水利信息化》
2011年第S1期33-38,共6页
Water Resources Informatization
关键词
人工鱼群
优化
支持向量机
水文预报
预报模型
artificial fish swarm
optimization
support vector machine
hydrologic forecasting
forecasting model