期刊文献+

基于特征选择和多分类支持向量机的异常检测 被引量:21

Anomaly detection based on feature selection and multi-class support vector machines
在线阅读 下载PDF
导出
摘要 现有大部分的异常检测系统都是把数据分成正常和异常两类,这样可能会丢失重要信息。特征选择的目的是减少异常检测冗余特征的同时,高度保持和原始特征的一致性。实现了特征选择和多分类支持向量机的异常检测技术。采取粗糙集、SVDF、LGP、MARS相结合的特征选择方法。同时利用多分类支持向量机把数据分成五类。通过实验分析,表明DoS攻击相对于其他3种攻击的漏报率是最高的。 The most of Intrusion detection systems divided data into two classes, which were normal and abnormal, so that it might lose some important information.The goal of feature selection was to decrease the redundant features for anomaly detection, and maintain the same high accuracy as the original features.It proposed an anomaly intrusion detection technique based on feature selection and multi-class support vector machines(SVM).The feature selection method merged RS, SVDF, LGP and MARS.Then, data was divided into five classes by the multi-class SVM.The experimental results demonstrate that the false positive rate of DoS is the highest one among four methods.
出处 《通信学报》 EI CSCD 北大核心 2009年第S1期68-73,共6页 Journal on Communications
基金 福建省科技厅专项项目资助(2007F5071)~~
关键词 异常检测 粗糙集 支持向量机 多类分类 特征选择 anomaly detection rough set support vector machine multi-class attribute selection
  • 相关文献

参考文献5

二级参考文献36

  • 1包潘晴,杨明福.基于KPCA和SVM的网络入侵检测[J].计算机应用与软件,2006,23(2):125-127. 被引量:19
  • 2Vladimir N.Vapnik著,张学工译.统计学习理论的本质.北京.清华大学出版社,2000.
  • 3边肇祺,张学工编著.模式识别.第二版,北京,清华大学出版社,2000.pp284-304
  • 4Angulo Cecilio Parra Xavier Català, Andreu. K-SVCR. A support vector machine for multi-class classification.Neurocomputing Volume. 55, Issue: 1-2, September, 2003,pp. 57-77.
  • 5J Weston and C Watkins. Multi-class support vector machines.Royal Holloway University of London, Technical Report,CSD-TR-98-04, May 20, 1998.
  • 6Lee W, StolfoSJ. Data mining approaches for intrusion detection [A]. In: Proceedings, Seventh USENIX Security Symposium, San Antonio, TX, 1998
  • 7Jha S,Tan K, Maxion R. Markov chains, classifiers and intrusion detection [A]. In: The 14th IEEE Computer Security Foundations Workshop, Canada, 2001. Proceedings, Seventh USENIX Security Symposium, San Antonio,TX, 1998
  • 8Balajinath B, Raghavan S. Intrusion detection through learning behavior model [J]. Computer Communications, 2001, 24 (12):1202-1212
  • 9Forrest S, Hofmeyr S A. Computer Immunology [J]. Communications of the ACM,1997,40(10): 88-96
  • 10Vapnik V N. The nature of statistical learning theory [M]. New York: Springer, 1995

共引文献62

同被引文献137

引证文献21

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部