期刊文献+

基于信息融合的客运站人体异常行为识别研究 被引量:2

Study on Human Abnormal Behavior Identification in Passenger Station Based on Multi-information Fusion
在线阅读 下载PDF
导出
摘要 论文构建了基于多路摄像机、微光夜视仪、红外热像仪的音频、视频等多源信息集成和融合的行为识别体系结构。提出了大型客运站的异常行为定义及识别流程,通过构建个体简单行为模型,并计算个体简单行为概率,推断复杂群体行为的发生概率。研究了客运站异常行为的界定和报警阀值设置,实现了客运站异常行为的有效识别和及时报警,为智能视频监控技术提供新的理论和方法。 An architecture of human behavior identification based on multi-information integration and fusion of multi-camera,low light level night vision,infra-red thermal audio and video imaging was constructed,and abnormal behavior definition and identification processes for large-scale passenger transport station was put forward.Through building an individual simple behavior model and calculating its behavior probability,the group complex behavior probability and identification were obtained.Then,by studying the abnormal behavior definition and alarm threshold setting,effective abnormal behavior identification and timely warning were realized.The study can provide a new theory and method for intelligent video surveillance technology.
出处 《公路交通科技》 CAS CSCD 北大核心 2009年第S1期58-61,87,共5页 Journal of Highway and Transportation Research and Development
关键词 智能运输系统 信息融合 异常行为识别 特征分析 ITS multi-information fusion abnormal behavior identification character analysis
  • 相关文献

参考文献6

二级参考文献123

  • 1何友,唐劲松,王国宏.多雷达跟踪系统中航迹质量管理的优化[J].现代雷达,1995,17(1):14-19. 被引量:9
  • 2王耀南.国家863计划项目验收技术报告-复杂工业过程的综合集成智能控制及应用[M].长沙:湖南大学,2000.150-200.
  • 3王耀南.计算智能数据处理技术及其应用[M].长沙:湖南大学出版社,1999.18-21.
  • 4[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 5[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 6[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 7[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 8[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 9[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 10[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785

共引文献541

同被引文献26

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部