期刊文献+

JUMP DETECTION BY WAVELET IN NONLINEAR AUTOREGRESSIVE MODELS 被引量:2

JUMP DETECTION BY WAVELET IN NONLINEAR AUTOREGRESSIVE MODELS
在线阅读 下载PDF
导出
摘要 Wavelets are applied to detection of the jump points of a regression function in nonlinear autoregressive model x(t) = T(x(t-1)) + epsilon t. By checking the empirical wavelet coefficients of the data,which have significantly large absolute values across fine scale levels, the number of the jump points and locations where the jumps occur are estimated. The jump heights are also estimated. All estimators are shown to be consistent. Wavelet method ia also applied to the threshold AR(1) model(TAR(1)). The simple estimators of the thresholds are given,which are shown to be consistent. Wavelets are applied to detection of the jump points of a regression function in nonlinear autoregressive model x(t) = T(x(t-1)) + epsilon t. By checking the empirical wavelet coefficients of the data,which have significantly large absolute values across fine scale levels, the number of the jump points and locations where the jumps occur are estimated. The jump heights are also estimated. All estimators are shown to be consistent. Wavelet method ia also applied to the threshold AR(1) model(TAR(1)). The simple estimators of the thresholds are given,which are shown to be consistent.
作者 李元 谢衷洁
出处 《Acta Mathematica Scientia》 SCIE CSCD 1999年第3期261-271,共11页 数学物理学报(B辑英文版)
关键词 jump points nonlinear autoregressive models WAVELETS jump points nonlinear autoregressive models wavelets
  • 相关文献

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部