期刊文献+

The Thermal History of the Huangmeijian Granite Intrusion in Anhui and Its Relation to Mineralization: Isotopic Evidence 被引量:6

The Thermal History of the Huangmeijian Granite Intrusion in Anhui and Its Relation to Mineralization: Isotopic Evidence
在线阅读 下载PDF
导出
摘要 Whole-rock Rb-Sr, zircon U-Pb and hornblende, biotite and K-feldspar K-Ar ages areused to reconstruct the cooling history of the Huangmeijian intrusion in the Anqing-Lujiangquartz-syenite belt in Anhui. Oxygen isotope geothermometry of mineral pairs demonstrates thatdiffusion is a dominant factor controlling the closure of isotopic systems. Assuming the coolingof the intrusion is synchronous with a dicrease in local geothermal gradients, an emplacementdepth of about 8 km and the magma crystallization temperature of 800±50℃ are estimated. TheHuangmeijian intrusion experienced a rapid cooling process and uplifted after its emplacementand crystallization at 133 Ma B.P. with a cooling rate of 34.5℃/Ma and an uplifting rate of 0.35mm/a. The intrusion was rising until it rested at a depth of 3km at a temperature of 300±50℃about 14 Ma later. Then the intrusion was in slow cooling and uplifting with a cooling rate of4.4℃/Ma and an uplifting rate of 0.04 mm/a. U-Pb dating of pitchblende is done for the hydrothermal uranium deposit formed in thecontact zone of the Huangmeijian intrusion. The result shows that the mineralization age is closeto the closing time of the K-Ar system in biotite. The fluid inclusion thermometry indicates thatthe mineralization temperature is in agreement with the closure temperature of the biotite K-Arsystem. This suggests a close relationship between the slow cooling of the intrusion and thehydrothermal uranium mineralization process. Whole-rock Rb-Sr, zircon U-Pb and hornblende, biotite and K-feldspar K-Ar ages areused to reconstruct the cooling history of the Huangmeijian intrusion in the Anqing-Lujiangquartz-syenite belt in Anhui. Oxygen isotope geothermometry of mineral pairs demonstrates thatdiffusion is a dominant factor controlling the closure of isotopic systems. Assuming the coolingof the intrusion is synchronous with a dicrease in local geothermal gradients, an emplacementdepth of about 8 km and the magma crystallization temperature of 800±50℃ are estimated. TheHuangmeijian intrusion experienced a rapid cooling process and uplifted after its emplacementand crystallization at 133 Ma B.P. with a cooling rate of 34.5℃/Ma and an uplifting rate of 0.35mm/a. The intrusion was rising until it rested at a depth of 3km at a temperature of 300±50℃about 14 Ma later. Then the intrusion was in slow cooling and uplifting with a cooling rate of4.4℃/Ma and an uplifting rate of 0.04 mm/a. U-Pb dating of pitchblende is done for the hydrothermal uranium deposit formed in thecontact zone of the Huangmeijian intrusion. The result shows that the mineralization age is closeto the closing time of the K-Ar system in biotite. The fluid inclusion thermometry indicates thatthe mineralization temperature is in agreement with the closure temperature of the biotite K-Arsystem. This suggests a close relationship between the slow cooling of the intrusion and thehydrothermal uranium mineralization process.
出处 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1996年第2期168-180,共13页 地质学报(英文版)
关键词 quartz syenite isotopic age oxygen isotope cooling history MINERALIZATION rate control quartz syenite isotopic age oxygen isotope cooling history mineralization rate control
  • 相关文献

同被引文献78

引证文献6

二级引证文献202

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部