期刊文献+

转铁蛋白与RGD共修饰PLGA纳米粒的制备及其对黑色素瘤的靶向性研究 被引量:2

Preparation of transferrin and RGD co-modified PLGA nanoparticles and its targeting to melanoma
在线阅读 下载PDF
导出
摘要 目的构建转铁蛋白(transferrin,TF)与RGD(精氨酸-甘氨酸-天冬氨酸,Arg-Gly-Asp)共修饰PLGA(聚乳酸羟基乙酸,poly(lactic-co-dycolic acid)纳米粒(TF/RGD-NPs),研究其黑色素瘤靶向性。方法采用乳化法制备TF和RGD共修饰纳米粒(TF/RGD-NPs),考察其形态、粒径、电位等理化性质。通过细胞摄取实验和黑色素瘤肿瘤球穿透实验考察TF/RGD-NPs与黑色素瘤B16细胞的亲和力和肿瘤组织穿透能力。结果制备的TF/RGD-NPs粒径为(113.4±12.5)nm,电位为(4.53±2.15)mV。体外细胞摄取实验表明B16细胞对TF/RGD-NPs的摄取效率分别是TF-NPs和RGD-NPs的2.7倍和2.9倍,差异均具有统计学意义(P<0.01)。细胞摄取实验和肿瘤球摄取实验结果表明TF/RGD-NPs具有良好的黑色素瘤细胞亲和力。结论转铁蛋白与RGD共修饰纳米粒具有良好的黑色素瘤靶向性,是一种潜在的黑色素瘤靶向给药系统。 Objective To prepare transferrin and Arg-Gly-Asp polypeptide co-modified nanoparticles(TF/RGD-NPs)and evaluate its targeting efficiency to melanoma.Methods The co-modified nanoparticles were prepared by emulsion method and its appearance,particle size and Zeta potential were evaluated.The cellular uptake experiment and melanoma tumor spheroids penetration test were used to evaluate the affinity and ability to penetrate tumor tissues of TF/RGD-NPs to melanoma B16 cells. Results The particle diameter of co-modified nanoparticles was(113.4 ±12.5)nm and the Zeta potential was(4.53 ±2.15)mV.In vitro uptake test demonstrated that the efficacy of cellular uptaken TF/RGD-NPs by B16 cells were 2.7 times and 2.9 times to TF-NPs and RGD-NPs,respectively,the differences were all significant(P<0.05 ).Tumor spheroid penetration test results showed that TF/RGD-NPs has good affinity to melanoma cells.Conclusion TF/RGD-NPs can target to melanoma B16 cell efficiency in vitro,it may be serve as a potential drug delivery system for targeting melanoma.
作者 李宗祥 孙平
出处 《中国生化药物杂志》 CAS 北大核心 2014年第4期19-21,共3页 Chinese Journal of Biochemical Pharmaceutics
基金 国家自然科学基金(81171365)
关键词 转铁蛋白 RGD PLGA纳米粒 黑色素瘤 药物靶向 transferrin RGD PLGA nanoparticle melanoma drug targeting
  • 相关文献

参考文献10

  • 1Eleonora Vighi,Eliana Leo.Studying the in vitro behavior of cationic solid lipid nanoparticles as a nonviral vector[J].Nanomedicine.2012(1)
  • 2Yao Qin,Huali Chen,Wenmin Yuan,Rui Kuai,Qianyu Zhang,Fulan Xie,Li Zhang,Zhirong Zhang,Ji Liu,Qin He.Liposome formulated with TAT-modified cholesterol for enhancing the brain delivery[J].International Journal of Pharmaceutics.2011(1)
  • 3安莲效,李慧,顾月清.RGD肽作为药物靶向配体的研究进展[J].中国生化药物杂志,2010,31(1):66-69. 被引量:15
  • 4Gao Huile,Pan Shuaiqi,Yang Zhi,Cao Shijie,Chen Chen,Jiang Xinguo,Shen Shun,Pang Zhiqing,Hu Yu.A cascade targeting strategy for brain neuroglial cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein[J].Biomaterials.2011(33)
  • 5Vladimir Torchilin.Tumor delivery of macromolecular drugs based on the EPR effect[J].Advanced Drug Delivery Reviews.2010(3)
  • 6Chee Wee Gan,Si-Shen Feng.Transferrin-conjugated nanoparticles of Poly(lactide)- d -α-Tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood–brain barrier[J].Biomaterials.2010(30)
  • 7Neha Shah,Kiran Chaudhari,Prudhviraju Dantuluri,R. S. R. Murthy,Susobhan Das.Paclitaxel-loaded PLGA nanoparticles surface modified with transferrin and Pluronic&lt;sup&gt;?&lt;/sup&gt;P85, an in vitro cell line and in vivo biodistribution studies on rat model[J].Journal of Drug Targeting.2009(7)
  • 8Karsten Ulbrich,Telli Hekmatara,Elisabeth Herbert,J?rg Kreuter.Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB)[J].European Journal of Pharmaceutics and Biopharmaceutics.2009(2)
  • 9Xue Ying,He Wen,Wan-Liang Lu,Ju Du,Jia Guo,Wei Tian,Ying Men,Yan Zhang,Ruo-Jing Li,Ting-Yuan Yang,De-Wei Shang,Jin-Ning Lou,Liang-Ren Zhang,Qiang Zhang.Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals[J].Journal of Controlled Release.2009(2)
  • 10刘彬,张晶,杨晶晶,黄小平,张敏萍,罗芳洪,庄国洪.RGD-FasL羟乙基壳聚糖缓释纳米粒制备及生物学研究[J].中国生化药物杂志,2012,33(6):772-775. 被引量:6

二级参考文献35

  • 1罗芳洪,李文珠,丘劲华,苏金华,庄国洪.重组人RGD-FasL对胶质瘤细胞U138/U343/U373的体外抗肿瘤的活性分析[J].免疫学杂志,2009(6):680-684. 被引量:1
  • 2钱慧敏,陈海燕,王旻,顾月清.近红外标记技术在生物医药领域的应用[J].药物生物技术,2006,13(4):306-309. 被引量:14
  • 3Temming K, Schiffelers R M, Molema G, et al. Kok RJ. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature [ J ]. Drug Resist Updat, 2005,8 ( 6 ) : 381-402.
  • 4Huveneers S, Truong H, Danen H J. Integrins: signaling, disease, and therapy [J] .Int J Radlat Biol,2007,83(11-12):743-751.
  • 5Cai W B, Chen X Y. Anti-angiogenic cancer therapy based on integrin αvβ3 antagonism [ J ]. Anti-Infect Agents Med Chem, 2006,6 ( 5 ) : 407- 428.
  • 6Ginsberg M H, Qartridge A, Shattil S J. Integrin regulation [J]. Curr Opin Cell Biol,2005,17(5):509-516.
  • 7Garanger E, Boturyn D, Dumy P. Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers [ J ]. Anticancer Agents Med Chem, 2007,7 (5) : 552-558.
  • 8Humphries J D, Byron A, Humphries M J. Integrin ligands at a glance [ J]. J Cell Sci, 2006,119 (19) : 3901-3903.
  • 9Haubner R, Bruchertseifer F, Bockl M, et al . Synthesis and biological evaluation of a ^99mTc labelled cyclic RGD peptide for imaging the αvβ3 expression [ J ]. J Nucl Med, 2004,43 ( 1 ) : 26-32.
  • 10Heindell W, Schaiers M, Bremer C. In vivo imaging of integrin αvβ3 expression using fluorescence-mediated tomography[J]. Eur J Nucl Med Mol Imaging,2007,34(5) :745-754.

共引文献19

同被引文献59

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部