期刊文献+

Mechanisms underlying the impaired contractility of diabetic cardiomyopathy 被引量:13

Mechanisms underlying the impaired contractility of diabetic cardiomyopathy
在线阅读 下载PDF
导出
摘要 Cardiac dysfunction is a well-known consequence of diabetes,with sustained hyperglycaemia leading to the development of a cardiomyopathy that is independent of cardiovascular disease or hypertension.Animal models of diabetes are commonly used to study the pathophysiology of diabetic cardiomyopathy,with the hope that increased knowledge will lead ultimately to better therapeutic strategies being developed.At physiological temperature,left ventricular trabeculae isolated from the streptozotocin rat model of type 1 diabetes showed decreased stress and prolonged relaxation,but with no evidence that decreased contractility was a result of altered myocardial Ca2+handling.Although sarcoplasmic reticulum(SR)Ca2+reuptake appeared slower in diabetic trabeculae,it was offset by an increase in actionpotential duration,thereby maintaining SR Ca2+content and favouring increased contraction force.Frequency analysis of t-tubule distribution by confocal imaging of ventricular tissue labeled with wheat germ agglutinin or ryanodine receptor antibodies showed a reduced T-power for diabetic tissue,but the differences were minor in comparison to other models of heart failure.The contractile dysfunction appeared to be the result of disrupted F-actin in conjunction with the increased typeⅠcollagen,with decreased myofilament Ca2+sensitivity contributing to the slowed relaxation. Cardiac dysfunction is a well-known consequence of diabetes,with sustained hyperglycaemia leading to the development of a cardiomyopathy that is independent of cardiovascular disease or hypertension.Animal models of diabetes are commonly used to study the pathophysiology of diabetic cardiomyopathy,with the hope that increased knowledge will lead ultimately to better therapeutic strategies being developed.At physiological temperature,left ventricular trabeculae isolated from the streptozotocin rat model of type 1 diabetes showed decreased stress and prolonged relaxation,but with no evidence that decreased contractility was a result of altered myocardial Ca2+handling.Although sarcoplasmic reticulum(SR)Ca2+reuptake appeared slower in diabetic trabeculae,it was offset by an increase in actionpotential duration,thereby maintaining SR Ca2+content and favouring increased contraction force.Frequency analysis of t-tubule distribution by confocal imaging of ventricular tissue labeled with wheat germ agglutinin or ryanodine receptor antibodies showed a reduced T-power for diabetic tissue,but the differences were minor in comparison to other models of heart failure.The contractile dysfunction appeared to be the result of disrupted F-actin in conjunction with the increased typeⅠcollagen,with decreased myofilament Ca2+sensitivity contributing to the slowed relaxation.
出处 《World Journal of Cardiology》 CAS 2014年第7期577-584,共8页 世界心脏病学杂志(英文版)(电子版)
基金 Supported by The Health Research Council of New Zealand
关键词 Diabetic CARDIOMYOPATHY Heart failure CONTRACTILITY T-TUBULES Excitation-contraction coupling Calcium HOMEOSTASIS Diabetic cardiomyopathy Heart failure Contractility T-tubules Excitation-contraction coupling Calcium homeostasis
  • 相关文献

同被引文献44

引证文献13

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部