期刊文献+

Ramanujan滤波多载波调制及高效实现算法的研究 被引量:1

Research on Ramanujan-FMT modulation and the efficient implementation algorithm
在线阅读 下载PDF
导出
摘要 总结了完全重建的Ramanujan-Fourier变换(RFT)的矩阵形式,利用RFT具有整数变换及频带分集的特点,提出将RFT变换应用于滤波多载波调制系统,在同样通道数M的情况下(M=64),乘法计算量较快速傅里叶变换(FFT)降低55%。并且推导出一种时域高效实现系统,该系统具有分集增益及频带可选择特性。仿真结果表明,在加性高斯白噪声信道中,该系统在信噪比6dB时误码率可以达到10^(-4);在瑞利衰落信道中,信噪比14dB时误码率可以达到10^(-4)。 The matrix form of reconstructive Ramanujan-Fourier Transform (RFT) was present. Base on the integer property and frequency diversity, a Ramanujan-filtered multitone (Ramanujan-FMT) modulation system was proposed. The multiplication computation amount can be reduced by 55%than that of FFT when the number of channels is 64. Furthermore, an efficient implementation system in the time domain was proposed with transition diversity and selective modulation band. The simulation results show that, the BER performance of the new system can reach at 10-4 in AWGN channel with the SNR equal to 6dB, and reach at 10-4 in Rayleigh fading channel with the SNR equal to 14dB.
出处 《新型工业化》 2013年第3期40-49,共10页 The Journal of New Industrialization
基金 高等学校博士学科点专项科研基金资助课题(No.20091102120010)
关键词 多载波调制 Ramanujan基 RFT IRFT multicarrier modulation Ramanujan sums RFT IRFT
  • 相关文献

参考文献11

  • 1G.Cherubini,E.Eleftheriou,S.Olcer. Filtered Multitone Modulation for VDSL[A].Rio de Janeiro:IEEE Computer Society Press,1999.1139-1144.
  • 2Boma B,Davidson T.N. Efficient design of FMT systems[J].IEEE Transactions on Communications,2006,(05):794-791.
  • 3Andrea M.Tonello,Fabio Rossi. Synchronization and Channel Estimation for Filtered Multitone Modulation[A].Abano Italy,2004.
  • 4Benvenuto N,Tomasin S. A Dynamic Rate Uplink Multiple Access Scheme Based on FMT Modulation[A].Italy:IEEE press,2004.909-913.
  • 5亓中瑞,高振明.滤波多音频系统中的自适应比特及功率分配方法[J].山东大学学报(理学版),2005,40(1):95-98. 被引量:1
  • 6S.Ramanujan. On certain trigonometric sums and their applications in the theory of numbers[J].Transactions of the Cambridge Philosophical Society,1918.259-276.
  • 7M.Planat,H.Rosu,S.Perrine. Ramanujan sums for signal processing of low-frequency noise[J].Physical Review E,2005.293-296.
  • 8M.LAGHA,M.BENSEBTI. Doppler spectrum estimation by Ramanujan-Fourier transform(RFT)[J].Digital Signal Processing,2009,(05):843-851.
  • 9郭旭静,王祖林.有限长Ramanujan-Fourier快速变换及频率估计[J].北京航空航天大学学报,2011,37(10):1317-1320. 被引量:2
  • 10P.Moree,H.Hommerson. Value distribution of Ramanujan sums and of cyclotomic polynomial coefficients[J].Mathematics Subject Classification,2000.7-10.

二级参考文献15

  • 1高静,刘华宁.广义M(o|¨)bius变换和算术Fourier变换[J].应用数学学报,2004,27(3):530-535. 被引量:2
  • 2Knockaert L: A generalized mobius transform, arithmetic Frouier transform and primitive roots[ J]. IEEE Trans on Signal Processing,1996,44(5) :1307-1310.
  • 3Planat M, Rosu H, Perrine S. Ramanujan sums for signal processing of low-frequency noise[ C]//Proceedings of 2002 IEEE International Frequency Control Symposium and PDA Exhibition. New Orleans: [ s. n. ] ,2002:715-720.
  • 4Ramanujan S. On certain trigonometric sums and their applications in the theory of numbers[ J]. Trans Camb Phil Soc, 1918, 22:259-276.
  • 5Samadi S,Ahmad M O,Swamy M. Ramanujan sums and discrete Fourier transforms [ J ]. IEEE Signal Processing Letters, 2005, 12(4) :293 -296.
  • 6Pei Soo Chang, Chang Kuo Wei. Odd ramanujan sums of complex roots of unity[J]. IEEE Signal Processing Letters,2007,14( 1 ) : 20-23.
  • 7Geetha K S, Ananthashayana V K. Fast multiplierless recursive transforms using Ramanujan numbers[ C ]//Proceedings of IEEE Multimedia, Signal Processing and Communication Technologies. Aliqarh, India: [ s. n. ] ,2009 : 116-119.
  • 8Mainardi L T, Bertinelli M, Sassi R. Analysis of T-wave alternans using the Ramanujan transform[ J]. Computer in Cardiology Bologna,2008,35:605-608.
  • 9Mohand Lagha, Messaoud Bensebti. Doppler spectrum estimation by Ramanujan-Fourler transform (RFT) [ J]. Digital Signal Processing,2009,19 ( 5 ) :843-851.
  • 10G Cherubini, E Eleftheriou, S Olcer, et al. Filter bank modulation techniques for very high-speed digitial subscriber lines[J]. IEEE Communications Magazine, 2000, 38(5): 98- 104.

共引文献2

同被引文献12

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部