期刊文献+

基于局部均值分解与形态谱的旋转机械故障诊断方法 被引量:10

Rotating machinery fault diagnosis based on local mean decomposition and pattern spectrum
在线阅读 下载PDF
导出
摘要 针对旋转机械不同类型故障会使振动信号具有不同形态特征及振动信号信噪比低等特点,提出基于局部均值分解(Local Mean Decomposition,LMD)与形态谱的旋转机械故障诊断方法。其中的LMD能对旋转机械原始振动信号进行降噪处理,而形态谱则能反映振动信号的形态特征,从而能判断旋转机械的工作状态。将该方法用于转子系统故障诊断,分析结果表明,该方法能有效提取旋转机械故障振动信号的故障特征,能准确识别旋转机械的故障状态。 In view of that the vibration signals of rotating machinery with different types of faults will have different morphological features and in consideration of the commonly encountered low signal to noise ratio of vibration signals, a rotating machinery fault diagnosis method based on local mean decomposition (LMD) and pattern spectrum was proposed. In the method, the original rotating machinery vibration signals were denoised by LMD, the morphological features of vibration signals were reflected by pattern spectrum, and thus the working states of rotating machinery were judged. The results of analysis of fault vibration signals of a rotor system indicate that the method can extract the fault characteristics from rotating machinery vibration signals effectively and recognize its fault states accurately.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第9期135-140,共6页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(51075131) 教育部长江学者与创新团队发展计划(531105050037) 湖南省自然科学基金资助项目(11JJ2026)
关键词 局部均值分解 形态谱 形态谱熵 旋转机械 故障诊断 Failure analysis Mechanical engineering Mechanical properties
  • 相关文献

参考文献11

  • 1Mukhopadhyay S,Chanda B. A multiscale morphological approach to local contrast enhancement[J].Signal Processing,2000,(04):685-696.doi:10.1016/S0165-1684(99)00161-9.
  • 2Zhang L J,Xu J W,Yang J H. Multiscale morphology analysis and its application to fault diagnosis[J].Mechanical Systems and Signal Processing,2008,(03):597-610.doi:10.1016/j.ymssp.2007.09.010.
  • 3Ishita D,Bhabatosh C,Buddhajyoti C. Enhancing effective depth-of-field by image fusion using mathematical morphology[J].Image and Vision Computing,2006,(12):1278-1287.doi:10.1016/j.imavis.2006.04.005.
  • 4Maragos P. Pattern spectrum and multiscale shape representation[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,(07):701-716.
  • 5Maragos P. Pattern spectrum of images and morphological shape-size complexity[A].Dallas,1987.241-244.
  • 6Smith J S. The local mean decomposition and its application to EEG perception data[J].JOURNAL OF THE ROYAL SOCIETY INTERFACE,2005,(05):443-454.
  • 7Serra J. Image analysis and mathematical morphology[M].New York:Academic Press,Inc,1982.
  • 8Steinberg S R. Grayscale morphology[J].Computer Vision Graphics and Image Processing,1986,(03):333-355.
  • 9Haralick R M,Sternberg S R,Zhuang X H. Image analysis using mathematical morphology[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,(04):523-550.
  • 10程军圣,杨宇,于德介.局部均值分解方法及其在齿轮故障诊断中的应用[J].振动工程学报,2009,22(1):76-84. 被引量:95

二级参考文献24

  • 1程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 2Baydar N, Ball A. Detection of gear failures via vibration and acoustics signals using wavelet transform[J]. Mechanical Systems and Signal Processing, 2003, 17 (4): 787-804.
  • 3Zheng H, Li Z, Chen X. Gear fault diagnosis based on continuous wavelet transform. Mechanical Systems and Signal Processing[J]. 2002, 16(2-3): 447-457.
  • 4Cohen L. Time-frequency distribution-a review [J]. Proceedings of the IEEE, 1989, 77(7): 941-981.
  • 5Classen T, Mecklenbrauker W. The aliasing problem in diserete-time Wigner distribution[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, 31(5): 1 067-1 072.
  • 6Lee Joon-Hyun, Kim J, Kim Han-Jun. Development of enhanced Wigner-Ville distribution function [J]. Mechanical Systems and Signal Processing, 2001, 13 (2) : 367-398.
  • 7Mallat S. A theory for multi-resolution decomposition, the wavelet representation[J]. IEEE Trans. P. A. M. I., 1989, 11(7):674-689.
  • 8Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc. R. Soc. Lond. A, 1998, 454: 903-995.
  • 9Huang N E, Shen Z, Long SR. A new view of nonlinear water waves: the Hitbert spectrum[J]. Annu. Rev. Fluid Mech. , 1999, 31: 417-457.
  • 10Loh C H, Wu T C, Huang N E. Application of the empirical mode decomposition-Hilber t spectrum method to identify near-fault ground-motion characteristics and structural response[J]. Bulletin of the Seismological Society of American, 2001, 91 (5): 1 339-1 357.

共引文献215

同被引文献71

引证文献10

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部