期刊文献+

基于购物倾向的商品推荐方案研究

A Commodity Recommend Scheme Based on Customers' Purchase Intentions
在线阅读 下载PDF
导出
摘要 为了提高商品推荐系统的性能,从理解B2C电子商务平台客户的购物倾向角度出发,进行实时的商品推荐。本文总结归纳了B2C电子商务平台的主要商品推荐位,以及如何基于商品信息建立商品标签,如何判别商品的相似性、相同性。在上述工作的基础上,重点论述了基于客户购物倾向的实时的商品推荐方案。本文对已有工作进行了深入对比和分析,对提出的方案进行了必要的理论分析和性能评估。并从XBRL的技术角度,对商品推荐方案进行了改进。 To improve the performance of the commodity recommendation system, this paper proposes two methods:(1) recommend commodity in real-time;(2) understand customers’ purchase intentions. In order to achieve the above goals, we summarize commodity recommendation location, and the label of commodity. Based on the above, we propose a scheme to improve the performance of the commodity recommendation system. We conduct an in-depth analysis on existing work, and give necessary theoretical analysis and performance evaluation for the proposed commodity recommend scheme. From the technical point of view, this method improves the above commodity recommend scheme.
出处 《集成技术》 2013年第3期15-21,共7页 Journal of Integration Technology
关键词 购物倾向 商品推荐方案 理论分析 性能评估 XBRL purchase intention commodity recommend scheme theoretical analysis performance evaluation XBRL
  • 相关文献

参考文献7

  • 1许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:548
  • 2王宏宇.商务推荐系统的设计研究[D]{H}合肥:中国科学技术大学,2007.
  • 3王树西.基于内容的B2C电子商务推荐算法研究[A],201278-85.
  • 4Beliakov G,Pradera A,Calvo, T. Aggregation Functions:A guide for practitioners[M].Springer.Heidelberg:New York,2007.
  • 5Torra V,Narukawa Y. Modeling Decisions.Information Fusion and Aggregation Operators[M].{H}Berlin:Springer-Verlag,2007.
  • 6Boritz J E,No W G. Assurance on XBRL-related documents:the case of united technologies corporation[J].Journal of Information Systems,2009.
  • 7Grabisch M,Marichal J L,Mesiar R. Aggregation Functions[M].Cambridge:Cambridge University Press,Encyclopedia of Mathematics and its Applications,2009.

二级参考文献72

  • 1Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 2Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 3Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 4Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 5Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 6Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 8Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 9Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.
  • 10Schafer JB, Konstan J, Riedl J. Recommender systems in e-commerce. In: Proc. of the 1 st ACM Conf. on Electronic Commerce. New York: ACM Press, 1999. 158-166.

共引文献547

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部