期刊文献+

基于ARMA与神经网络的风速序列混合预测方法 被引量:10

Hybrid prediction method for wind speed series based on ARMA and neural network
在线阅读 下载PDF
导出
摘要 为提高风速预测的准确性,采用卡尔曼滤波方法将ARMA模型和BP神经网络相结合,提出一种混合预测方法。根据时间序列分析理论,利用已知风速序列建立风速序列的自回归预测模型,并以此建立卡尔曼滤波的状态方程和测量方程。再利用BP神经网络的预测结果作为卡尔曼滤波的观测值,通过卡尔曼滤波的递推计算得到未来风速的最优估计值,从而实现风速序列的混合预测。仿真实验结果表明:混合预测方法能够有效改善风速序列的预测性能。与传统卡尔曼滤波预测结果相比,混合预测方法预测结果的延迟现象得到改善,与神经网络预测结果相比,混合预测方法在风速序列极值点的预测误差大大减小。 In order to improve the prediction accuracy of wind speed series,a novel hybrid prediction method,combining ARMA model and BP neural network,based on Kalman Filter was proposed.The known wind speed series were used to establish the autoregressive model by time series analysis theory.According to the autoregressive model,the state equation and the measurement equation of Kalman filter were established.The forecast results of BP neural network were used as the observations of Kalman filter.In this way,the hybrid prediction based on Kalman filter was completed,and the forecast results of the future wind speed series were gotten by the optimal estimation of Kalman filter.Simulation results show that the hybrid prediction method can significantly improve the prediction performance of the wind speed series.The hybrid prediction method has lesser forecast delay than the conventional Kalman filter method,and smaller prediction error at the extreme points than BP neural network.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第S1期16-20,共5页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(61203302)
关键词 风速预测 卡尔曼滤波 BP神经网络 ARMA wind speed forecast Kalman filter BP neural network ARMA
  • 相关文献

参考文献10

  • 1吕涛,唐巍,所丽.基于混沌相空间重构理论的风电场短期风速预测[J].电力系统保护与控制,2010,38(21):113-117. 被引量:30
  • 2刘烨,卢小芬,方瑞明,宋彦兵.风力发电系统中风速预测方法综述[J].电网与清洁能源,2010,26(6):62-66. 被引量:17
  • 3罗海洋,刘天琪,李兴源.风电场短期风速的混沌预测方法[J].电网技术,2009,33(9):67-71. 被引量:56
  • 4潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术,2008,32(7):82-86. 被引量:223
  • 5Federico Cassola,Massimiliano Burlando.Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output[J]. Applied Energy . 2012
  • 6Hui Liu,Hong-qi Tian,Yan-fei Li.Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction[J]. Applied Energy . 2012
  • 7Pan Zhao,Jiangfeng Wang,Junrong Xia,Yiping Dai,Yingxin Sheng,Jie Yue.Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China[J]. Renewable Energy . 2011
  • 8Qing Cao,Bradley T. Ewing,Mark A. Thompson.Forecasting wind speed with recurrent neural networks[J]. European Journal of Operational Research . 2012 (1)
  • 9Zhen-hai Guo,Jie Wu,Hai-yan Lu,Jian-zhou Wang.A case study on a hybrid wind speed forecasting method using BP neural network[J]. Knowledge-Based Systems . 2011 (7)
  • 10Gong Li,Jing Shi,Junyi Zhou.Bayesian adaptive combination of short-term wind speed forecasts from neural network models[J]. Renewable Energy . 2010 (1)

二级参考文献37

共引文献295

同被引文献87

引证文献10

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部