期刊文献+

基于QPSO算法优化的RBF神经网络设计 被引量:3

Optimal design of RBF NN based on QPSOalgorithm
在线阅读 下载PDF
导出
摘要 提出基于QPSO算法优化的RBF神经网络。此网络的核心算法是将RBF神经网络的参数组成1个向量,构造成QPSO算法中的粒子,由此在可行范围内搜索一组使网络均方误差最小的最优解。实例仿真部分分别用优化前后的网络对Legendre函数进行函数逼近。研究结果表明:经过优化的RBF网络与传统RBF网络相比具有计算精度高、收敛速度快的优点。 The radial basis function neural network was designed based on QPSO algorithm.This algorithm builds a vector composed of parameters of network which is the quantum in the QPSO algorithm,so it is possible to search a set of parameters minimizing the mean squared error.In the simulation,the Legendre function was approximated by the new neural network.The result shows that the new neural network has high accuracy and fast convergence rate compared with the traditional RBF.
作者 刘梓溪 张航
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第S1期27-30,共4页 Journal of Central South University:Science and Technology
关键词 QPSO RBFNN PSO 函数逼近 QPSO RBF NN PSO function approximation
  • 相关文献

参考文献5

  • 1王鹏,刘渊.基于改进的QPSO训练BP网络的网络流量预测[J].计算机应用研究,2009,26(1):299-301. 被引量:11
  • 2Clerc M,Kennedy J.The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation . 2002
  • 3Sun Jun,Feng Bin,Xu Wenbo.Particle swarm optimization with particles having quantum behavior. Proceedings of 2004 Congress on Evolutionary Computation . 2004
  • 4Xu Lei,Adam Krzyzak,Erkki Oja.Rival penalized competitive learning for clustering analysis, RBF net and curve detection. IEEE Transactions on Neural Networks . 1993
  • 5Van den Bergh F.An analysis of particle swarm optimizers. . 2001

二级参考文献11

  • 1张春燕,须文波,孙俊,管芳景.MQPSO:一种具有多群体与多阶段的QPSO算法[J].计算机应用研究,2007,24(3):100-102. 被引量:8
  • 2FELDMANN A, GILBERT A C, WILLINGER W. Data networks as cascades:investigating the multifractal nature of Internet WAN traffic [ C ]//Proc of SIGCOMM Conference on Applications, Technologies, and Protocols for Computer Communication. New York:ACM Press, 1998:42-45.
  • 3HOTNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators [ J ]. Neural Netwroks, 1989,1 (2) :359-366.
  • 4HUSSEIN D. An object-oriented neural network approach to short-term traffic forecasting [ J ] European J of Operational Research, 2001,131 (2) :253-261.
  • 5ATIYA A F, ALY M A, PARLOS A G. Sparse basis selection:new results and application to adaptive prediction of video source traffic [ J ]. I EEE Trans on Neural Networks,2005,16 (5) : 1136-1146.
  • 6GUO Wen, QIAO Yi-zheng, HOU Hai-yan. BP neural network optimized with PSO algorithm and its application in forecasting [ C ]// Proc of IEEE International Conference on Information Acquisition: Washington DC : IEEE Computer Society,2006:617- 621.
  • 7SUN Wei, ZOU Ying. Short term load forecasting based on BP neural network trained by PSO [ C ]//Proc of the 6th International Conference on Machine Learning and Cybernetics. 2007:2863-2866.
  • 8SUN Jun, XU Wen-bo, FENG Bin. A global search strategy of quantum-behaved particle swarm optimization [ C ]//Proc of IEEE confereuce on Cybernetics and Intelligent Systems. 2004 : 111 -116.
  • 9SUN Jun, FENG Bin, XU Wen-bo. Particle swarm optimization with particles having quantum behavior[ C]//Prec of Congress Oil Evolutionary Computation. Piscataway NJ : IEEE Press,2004 : 325- 331.
  • 10SUN Jun, XU Wen-bo, FENG Bin. Adaptive parameter control for quantum-behaved particle swarm optimization on individual level [ J ]. IEEE International Conference on Systems,Man and Cybernetics ,2005,4 ( 10 ) :3049- 3054.

共引文献10

同被引文献21

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部