期刊文献+

基于RFID技术的大范围未知环境信息表征 被引量:5

Navigation information description of large unknown environment based on RFID technology
在线阅读 下载PDF
导出
摘要 人工地标是未知环境中机器人自主构建地图难度降低的有效手段。但目前使用的人工地标大多只能提供位置标识,不能提供环境的功能、上下文等语义信息。在此,提出了基于RFID技术的"信息分布式表征"模式,彻底改变了导航必须先建地图的传统模式。基于标签的优化布局策略将RFID标签分散布置于环境的关键位置处。将关键位置的语义信息,环境的上下文信息、目标指引信息等存于RFID标签中。虽然机器人对环境一无所知,但能实现无地图的导航。 Artificial landmark is the effective means for reducing the mapping difficulty autonomously in unknown environment.However,the artificial landmark used currently only gives the position information but can not provide some semantic information of function,context,and so on.A 'information distributed description' mode based on RFID technology is introduced to change the traditional mode of map building first.Based on the optimizing layout strategy,RFID labels are distributed at the key points in the environment.The semantic information,context information and navigation information are stored in the RFID labels.Although the robot knows nothing about the environment,the robot can realize the navigation without the environment map.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第S1期166-170,共5页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(61203330 61104009 61075092) 山东省自然科学基金资助项目(ZR2012FM031 ZR2011FM011 ZR2010FM007) 山东大学自主创新基金资助项目(2012TS078 2011JC017) 山东省博士后基金资助项目(201203058)
关键词 RFID 信息获取 优化布局 自主性 RFID information acquisition optimizing layout autonomous
  • 相关文献

参考文献9

  • 1周武,赵春霞.一种基于遗传算法的FastSLAM 2.0算法[J].机器人,2009,31(1):25-32. 被引量:20
  • 2Lategahn H,Geiger A,Kitt B.Visual SLAM for autonomous ground vehicles. IEEE Int Conf on Robotics and Automation(ICRA) . 2011
  • 3Yu-Cheol Lee,Christiand,C,Heesimg Chae,Wonpil Yu.Artificial landmark map building method based on grid SLAM in large scale indoor environment. IEEE International Conference on Systems Man and Cybernetics (SMC) . 2010
  • 4Thomas E,Andreas S.Simultaneous localization and mappingwith the kinect sensor. 7th German Conference on Robotics . 2012
  • 5Lee Y C,Christiand C,Chae H,et al.Applications of robotnavigation based on artificial landmark in large scale publicspace. 2011 IEEE International Conference on Robotics andBiomimetics (ROBIO) . 2011
  • 6Kamol P,Nikolaidis S,Ueda R,et al.RFID based objectlocalization system using ceiling cameras with particlefilter. International Conference on Future GenerationCommunication and Networking (FGCN 2007) . 2007
  • 7Cerrada C,Salamanca S,Adan A,et al.Improved method forobject recognition in complex scenes by fusioning 3-Dinformation and RFID technology. IEEE Transactions onInstrumentation and Measurement . 2009
  • 8Deyle T,Hai N,Reynolds M S,et al.RFID-Guided robots forpervasive automation. Pervasive Computing . 2010
  • 9Martinez R,Freitas N,Castellanos J A.Analysis of particlemethods for simultaneous robot localization and mapping and anew algorithm:Marginal-SLAM. IEEE InternationalConference on Robotics and Automation . 2007

二级参考文献16

  • 1陈得宝,赵春霞.一种改进遗传算法性能的方法研究[J].南开大学学报(自然科学版),2005,38(6):84-88. 被引量:6
  • 2Smith R C, Cheesman E On the representation and estimation of spatial uncertainty[J]. The International Journal of Robotics Research, 1986, 5(4): 56-68.
  • 3Durrant-Whyte H E Uncertain geometry in robotics[J]. IEEE Journal of Robotics and Automation, 1988, 4(1): 23-31.
  • 4Smith R C, Self M, Cheeseman P. Estimating uncertain spatial relationships in robotics[A]. Autonomous Robot Vehicles[M]. New York, USA: Springer-Verlag, 1990. 167-193.
  • 5Thrun S, Burgard W, Fox D. A probabilistic approach to concurrent mapping and localization for mobile robots[J]. Machine Learning, 1998, 31(1-3): 29-53.
  • 6Guivant J E, Nebot E M. Optimization of the simultaneous localization and map-building algorithm for real-time implementation[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 242-257.
  • 7Doucet A, de Freitas J, Murphy K, et al. Rao-Blackwellized particle filtering for dynamic Bayesian networks[A]. Proceedings of the Conference on Uncertainty in Artificial Intelligence[C]. San Fransisco, CA, USA: Morgan Kaufmann, 2000. 176-183.
  • 8Montemerlo M, Thrun S, Koller S T D, et al. FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges[A]. Proceedings of the International Conference on Artificial Intelligence[C]. California, CA, USA: IJCAI, 2003. 1151-1156.
  • 9Kim C, Sakthivel R, Chung W K. Unscented FastSLAM: A robust algorithm for the simultaneous localization and mapping problem[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 2007. 2439-2445.
  • 10van der Merwe R, de Freitas N, Doucet A, et al, The Unscented Particle Filter[R]. Portland, OR, USA: Oregon Gradu.ate Institute, 2000.

共引文献19

同被引文献64

  • 1李建平,林妙玲.自动导航技术在农业工程中的应用研究进展[J].农业工程学报,2006,22(9):232-236. 被引量:59
  • 2黄风山,钱惠芬.激光跟踪测距三维坐标视觉测量系统建模[J].光电子.激光,2007,18(11):1333-1335. 被引量:4
  • 3Jin Y Y, Soh W S, Motani M, et al. A robust indoor pedestrian tracking system with sparse infrastructure support [ J]. IEEE Transactions on Mobile Computing, 2013, 12(7) : 1392 -1403.
  • 4Vu A, Ramanandan A, Chen A N, et al. Real-time computer vision/DGPS-Aided inertial navigation system for lane-level vehicle navigation [ J ]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (2) : 899 - 913.
  • 5Ruotsalainen L, Kuusniemi H, Bhuiyan M Z H, et al. A two-dimensional pedestrian navigation solution aided with a visual gyroscope and a visual odometer [ J 3. GPS Solutions, 2013, 17 (4) : 575 - 586.
  • 6Jimenez P A, Shirinzadeh B. Laser interferometry measurements based calibration and error propagation identification for pose estimation in mobile robots [J]. Robotica, 2014, 32( 1 ) : 165 -174.
  • 7Tache F, Pomerleau F, Caprari G, et al. Three-dimensional localization for the magnebike inspection robot [ J]. Journal of Field Robotics, 2011, 28 ( 2 ) : 180 - 203.
  • 8Jimenez R A R, Seco G F, Prieto H J C, et al. Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements [J~. IEEE Transactions on Instrumentation and Measurement, 2012, 61 (1) :178 -189.
  • 9Ramadass G A, Vcdachalam N, Balanagajyothi V. A modeling tool for sensor selection for inertial navigation systems used in underwater vehicles[ C]//Processings of Ocean Electronics, 2013 : 175 - 188.
  • 10Sotak M. Testing the coarse alignment algorithm using rotation platform [ J]. Acta Polytechnica Hungarica, 2010, 7 (5) : 87 - 107.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部