期刊文献+

基于活动轮廓模型的道路障碍物检测算法的研究

Study of the Obstacle Detection Based on Active Contour Models
在线阅读 下载PDF
导出
摘要 提出了基于活动轮廓模型的智能机器人障碍物检测算法。首先通过对采集得到的道路图像进行道路区域的提取,再针对提取目标区域确定初始轮廓线,采用简化的Mum-ford-Shah模型进行有限范围的图像分割,获得障碍物信息。由于该算法预先进行了道路区域的分割,将背景复杂的图像转换为单一背景的二值图像,弥补了活动轮廓模型本身算法对于多目标复杂背景分割效果不理想的不足,大大提高了障碍物检测的准确性;同时,由于将检测的范围缩小在道路区域,也极大的提高了运算的速率。 This paper proposed a new algorithm of robot obstacle detection that based on the active contour models.The images that acquired by the camera are firstly processed to extract the road areas from which determine the initial contour lines,and then Mumford Shah are applied to carry out the segmentations.As the extraction of the road areas,the background has been changed from complex to simple,which remedies the poor results that due to segmentation based on the active contour models under multiple aims and complex background.The results of the experiment show that the algorithm can improve the correctness of the obstacle detection and strengthen the timeliness by the accelerated arithmetic speed that completes in a limited area.
作者 王磊 钱厚亮
出处 《控制工程》 CSCD 北大核心 2013年第S1期202-205,共4页 Control Engineering of China
基金 南京工程学院青年基金项目(QKJB2011025)
关键词 活动轮廓模型 障碍物检测 道路提取 图像分割 active contour models obstacle detection road extraction image segmentation
  • 相关文献

参考文献6

  • 1纪天明,贺跃,于同,王少军.智能车辆导航系统中的实时道路检测[J].计算机应用,2005,25(B12):228-230. 被引量:4
  • 2李庆忠,陈显华,顾伟康.基于彩色立体视觉的障碍物快速检测方法[J].计算机科学,2003,30(9):72-75. 被引量:13
  • 3Makoto Miyahara,Yasuhiro Yashid.Mathematical transform of (R,G,B) color data to munsell (H,S,V) color data. Visual Communications and Image Processing 88’ SPIE . 1988
  • 4Zhao H K,Chan T,Merriman B,et al.A variational level set approach to multiphase motion. Journal of Computational Physics . 1996
  • 5Li CM,Xu CY,Gui CF,et al.Level set evolution without re-initialization: A new variational formulation. IEEE Computer Society Conference on Computer Vision and Pattern Recognition . 2005
  • 6Chan T F,Vese L A.Active contours without edges. IEEE Transactions on Image Processing . 2001

二级参考文献12

  • 1王国权,仲伟波.灰度图像增强算法的改进与实现研究[J].计算机应用研究,2004,21(12):175-176. 被引量:22
  • 2张红梅,卞正中,郭佑民,叶敏.感兴趣区域高效提取算法(英文)[J].软件学报,2005,16(1):77-88. 被引量:15
  • 3皮燕妮,史忠科,黄金.结构化公路车道的精确检测与跟踪[J].计算机工程与应用,2005,41(1):203-206. 被引量:4
  • 4Williamson T, Thorpe C. A trinocular stereo system for highway obstacle detection. In: Proc of IEEE Int Conf on Robotics and Automation, 1999,3 :2267-2273.
  • 5Okutomi M, Kanade T. A multiple-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15 (4):353-363.
  • 6Mandelbaum R, Hansen M, et al. Vision for autonomous mobility: image processing on the VFE-200.In: Proc of IEEE Intl Symposium on Computational Intelligence in Robotics and Automation (CIRA), Intelligent Systems and Semiotics (ISAS), 1998. 671-676.
  • 7Tao Y, et al. Fourier-based separation technique for shape grading of potatoes using machine vision. Transaction of the ASAE, 1995,38 (3): 949-957.
  • 8CHEN M, JOCHEM T, AURORA PD. A vision-based roadway departure system[ A] . Proceedings of IEEE Conference on Intelligent Robots and Systems[ C], 1995. 243 -248.
  • 9CHAPUIS R, AUFRERE R, CHAUSSE F. Accurate road following and reconstruction by computer vision [ J] . IEEE Transaction on Intelligent Transportation Systems, 2002, 3 (4):261-270.
  • 10CRISMAN JD, SCARF TCE. A color vision system that tracks roads and intersections[ J]. IEEE Transactions on Robotics and Automation, 1993,9(1):49-58.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部