期刊文献+

路面供电电动汽车感应电能传输系统综述(英文) 被引量:1

A Review on Inductive Power Transfer Systems for Roadway Powered Electric Vehicles
在线阅读 下载PDF
导出
摘要 近年来,由于化石燃料的日益紧缺以及自然环境的不断恶化,电动汽车受到了人们的广泛关注。然而,其发展和商业化进程受到了诸如价格高昂、电池组庞大笨重、续航里程短、充电时间长以及充电频繁等因素的严重阻碍。为了解决上述问题,人们提出了基于感应电能传输技术的路面供电电动汽车(或称为在线电动汽车)。本文从供电导轨和拾取机构、谐振变换器和控制策略、电磁屏蔽技术等几个方面综述了感应电能传输系统在路面供电电动汽车领域的应用现状。此外,并就应用于路面供电电动汽车感应电能传输系统未来可能的发展趋势做了探讨。 In recent years,electric vehicles(EVs) are widely concerned due to fossil fuel shortage and environmental deterioration.However,their development and commercialization are obstructed by significant drawbacks,such as the high price,overweight of battery pack,short driving distance,long charging time and frequent charging requirement,etc.To solve these problems,the so-called roadway powered electric vehicles(RPEVs) or online electric vehicles(OLEVs) using an inductive power transfer(IPT) technique have been proposed.This paper presents the recent research advancements of IPT systems for RPEVs(IPTS-RPEVs) application,including the power track and pick-up,resonant converter and control strategy,and electromagnetic field shielding methods.Moreover,the possible future trends of IPTS-RPEVs are also been discussed.
出处 《电工技术学报》 EI CSCD 北大核心 2013年第S2期75-80,共6页 Transactions of China Electrotechnical Society
基金 Project supported by China Postdoctoral Science Foundation(2013M540941) Shenzhen Key Laboratory of LED Packaging(NZDSY20120619141243215)
关键词 感应电能传输 路面供电电动汽车 供电导轨 电磁场屏蔽 Inductive power transfer,roadway powered electric vehicles,power track,electromagnetic filed shielding
  • 相关文献

参考文献1

二级参考文献18

  • 1Zhang Xian, Yang Qingxin, Chen Haiyan, et al. Analysis of a novel near-field non-radiative wireless power transmission systemiC]//2011 International Conference on Control, Automation and Systems Engineering (CASE 2011). Singapore: IEEE, 2011: 1-4.
  • 2Karalis A, Joannopoulos J D, Soljacic M. Efficient wireless non-radiative mid-range energy transfer [J]. Annals of Physics January Special Issue 2008, 323(1): 34-48.
  • 3Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magnetic resonances [J]. Science, 2007, 317(5834): 83-86.
  • 4Sample A P, Yeager D J, Powledge P S, et al. Design of an RFID-based battery-free programmable sensing platform[J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(11): 2608-2615.
  • 5Sample A P, Meyer D T, Smith J R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer[J]. IEEE Transactions on Industrial and Electronics, 2011, 58(2): 544-554.
  • 6Takehiro I, Hiroyuki O, Toshiyuki U, et al. Wireless power transfer during displacement using electromagnetic coupling in resonance[J]. IEEE Transactions on IndustryApplications, 2010, 130(1): 76-83.
  • 7Beh T C, Imura T, Kato M, et al. Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching [C]//2010 IEEE International Symposium on Industrial Electronics (ISIE2010). Bari: IEEE, 2010: 2011-2016.
  • 8Imura T, Okabe H, Hori Y. helical antennas of wireless Basic experimental study on power transfer for Electric Vehicles by using magnetic resonant couplings[C]//IEEE Vehicle Power and Propulsion Conference, 2009(VPPC '09). Dearborn: IEEE, 2009: 936-940.
  • 9Nilsson J W. Electrical circuits[M]. 4th ed. Reading, MA: Addison-Wesley, 1993: 358-390.
  • 10Stratton J A. Electromagnetic theory[M]. New York: McGraw-Hill, 1941: 90-105.

共引文献91

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部