期刊文献+

基于活跃熵的网络异常流量检测方法 被引量:20

Abnormal network traffic detection approach based on alive entropy
在线阅读 下载PDF
导出
摘要 提出了一种基于活跃熵的网络异常流量检测新方法,将受监控的目标网络视为一个整体系统,对进出系统的网络数据流所形成的NetFlow记录进行分析,分别统计二者的活跃度并计算它们的活跃熵。在进行活跃熵的计算时,根据流量大小选择不同的尺度来降低误报率,从而能更有效地检测网络流量中存在的异常。在实际网络环境下的模拟实验结果表明,与传统检测方案相比,基于活跃熵的网络异常流量检测方法能够更有效地检测出具有随机特征的网络异常流量。 A novel alive entropy-based detection approach was proposed, which detects the abnormal network traffic based on the values of alive entropies. The alive entropies calculated based on the NetFlow data coming from the network traffic of input and output of a whole system, which is essentially a monitored network. In order to decrease false positive rate of abnormal network traffic, different scales are selected to compute the values of alive entropies in different sizes of network traffic. With the low false positive rate of abnormal network traffic, the abnormal network traffic can be effectively detected. Experiments carried out on a real campus network were used to evaluate the effectiveness of the proposed approach. A comparative study illustrates that the proposed approach may easily detect the abnormal network traffic with random characteristics in comparison with some 'conventional' approaches reported in the literatures.
出处 《通信学报》 EI CSCD 北大核心 2013年第S2期51-57,共7页 Journal on Communications
基金 国家自然科学基金资助项目(61272450) 滨海新区科技小巨人成长计划基金资助项目(2011-XJR12005)~~
关键词 活跃熵 网络流量 异常流量检测 NetFlow分析 alive entropy network traffic abnormal traffic detection NetFlow analysis
  • 相关文献

参考文献6

  • 1刘衍珩,付枫,朱建启,孙鑫.基于活跃熵的DoS攻击检测模型[J].吉林大学学报(工学版),2011,41(4):1059-1064. 被引量:22
  • 2曾嘉,金跃辉,叶小卫.基于NetFlow的网络异常流量检测[J].微计算机应用,2007,28(7):709-713. 被引量:7
  • 3Nahur Fonseca,Mark Crovella,Kavé Salamatian.Long range mutual information[J].ACM SIGMETRICS Performance Evaluation Review.2008(2)
  • 4Eddie Kohler,Jinyang Li,Vern Paxson,Scott Shenker.Observed structure of addresses in IP traffic[J].IEEE/ACM Transactions on Networking (TON).2006(6)
  • 5Nick Duffield,Carsten Lund,Mikkel Thorup.Estimating flow distributions from sampled flow statistics[J].IEEE/ACM Transactions on Networking (TON).2005(5)
  • 6Anja Feldmann,Albert Greenberg,Carsten Lund,Nick Reingold,Jennifer Rexford,Fred True.Deriving traffic demands for operational IP networks[J].IEEE/ACM Transactions on Networking (TON).2001(3)

二级参考文献22

  • 1Mirkovic J, Reiher P. A Taxonomy of DDoS attack and DDoS defense mechanisms [J] ACM SIG- COMM Computer Communications Review, 2004, 34(2) : 39-53.
  • 2Lawniczak A T, Wu H, Di Stefan B N. Detection of anomalous packet traffic via entropy[C] // Proceed ings of the 22nd IEEE Canadian Conference on Elec trical and Computer Engineering, Canada, 2009: 137-141.
  • 3Lee W, Xiang D. Information theoretic measures foranomaly detection [C] /// Proceedings of the IEEE Symposium on Security and Privacy, Washington, 2001:130-147.
  • 4Feinstein I., Sehnackenberg D, Balupari R, et al. Statistical approaches to DDoS attack detection and response[C]// Proceedings of the DARPA Informa- tion Survivability Conference and Exposition, Washington, 2003: 303-314.
  • 5Lall A, Sekar V, Xu J,et al. Data streaming algo rithms for estimating entropy of network traffic[J] ACM SIGMETRICS Performance Evaluation Re view, 2006, 34(1): 145-156.
  • 6I.akhina A, Crovella M, Diot C. Mining anomalies using traffic feature distributions[J]. Computer Communication Review, 2005, 35(4): 217-228.
  • 7Li K, Zhou W L, Yu S, et al. Effective DDoS at tacks detection using generalized entropy metrie[C] //Proceedings of the 9th International Conference on Algorithms and Architectures for Parallel Process ing, Taiwan, 2009:266-280.
  • 8Rahmani H, Sahli N, Kammoun F. Joint entropy a nalysis model for DDoS attack detection[C] // Pro ceedings of the 5th International Conference on In formation Assurance and Security, Xi'an, 2009 267-271.
  • 9Nychis G, Sekar V, Andersen D G. An empirical e- valuation of entropy based traffic anomaly detection[C] // Proceedings of the 8th ACM SIGCOMM In- ternet Measurement Conference, Greece, 2008:151-156.
  • 10Sarvotham S, Riedi R, Baraniuk R. Network traffic analysis and modeling at the connection level[C]// Proceedings of the Internet Measurement Work- shop, San Francisco, 2001:99-103.

共引文献27

同被引文献262

引证文献20

二级引证文献227

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部