期刊文献+

基于边缘采样UKF滤波的捷联惯导初始对准方法 被引量:3

Initial alignment of strapdown inertial navigation system based on marginalized unscented Kalman filter
在线阅读 下载PDF
导出
摘要 设计了基于四元数的捷联惯导非线性初始对准模型,同时指出该模型仅仅是姿态误差四元数和速度误差的非线性函数,而对于惯性器件误差而言则是线性的。针对该模型的部分线性特性,设计了基于边缘采样的UKF滤波算法,该算法仅对状态量中的非线性子集进行采样,因此对于部分线性模型而言,该算法在不损失滤波精度的前提下能够有效降低算法计算量。仿真及车载实测数据实验表明所研究的初始对准模型和相应的滤波算法是有效的,而且较传统方法具有明显的计算量方面的优势;在达到相同对准精度的前提下,所设计算法的计算量较传统算法降低了52%。 A quaternion-based nonlinear model is designed for the initial alignment of a strapdown inertial navigation system(SINS) with large initial errors. It is pointed out that the model has only the nonlinear function relation with quaternion-based misalignment error and the velocities error, whereas it has linear relation with the errors of inertial sensors. In view of this partially linear characteristic, a unscented Kalman filter(UKF) algorithm with marginalized-sampling-based unscented transformation(UT) is designed, which only samples the nonlinear subset of state variables, and can effectively reduce the computation burden without losing filtering accuracy. Simulations and car-mounted experiments demonstrate that the marginalized UT-based Kalman filter can achieve at least a comparable performance to the traditional UT-based Kalman filter with a significantly lower expense. Compared with the traditional algorithm, the investigated method can reach the same alignment precision but with 52% reduced computational burden.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2014年第5期612-618,共7页 Journal of Chinese Inertial Technology
基金 国家自然科学基金(61304241 61374206)
关键词 捷联惯导 初始对准 UKF 边缘采样 SINS initial alignment unscented Kalman filter marginalized sampling
  • 相关文献

同被引文献34

  • 1严恭敏,严卫生,徐德民.基于欧拉平台误差角的SINS非线性误差模型研究[J].西北工业大学学报,2009,27(4):511-516. 被引量:23
  • 2刘国海,李康吉.基于PDA的GPS定位精度提高方法[J].江苏大学学报(自然科学版),2005,26(5):448-452. 被引量:10
  • 3秦永元,严恭敏,顾冬晴,郑吉兵.摇摆基座上基于信息的捷联惯导粗对准研究[J].西北工业大学学报,2005,23(5):681-684. 被引量:133
  • 4Arasaratnam I, Haykin S. Cubature Kalman filters[J].IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269.
  • 5Ge Q b, Xu D X, Wen C L. Cubature information filters with correlated noises and their applications in decentralized fusion [J].Signal Processing, 2014, 94: 434-444.
  • 6Gadsden S A, Al-Shabi M, Arasaratnam I, et al. Combined cubature Kalman and smooth variable structure filtering: a robust nonlinear estimation strategy [J].Signal Process, 2014, 96:290-299.
  • 7Jia B, Xin M, Cheng Y. High-degree cubature Kalman filter [J].Automatica, 2013, 49(2): 510-518.
  • 8Jia B, Xin M. Rauch-Tung-Striebel high-degree cubature Kalman smoother [C]∥Proceddings of American Control Conference. Washington, DC, US:the American Automatic Control Council, 2013:2472-2477.
  • 9Wang S Y, Feng J C, Tse C K. Spherical simplex-radial cubature Kalman filter [J].IEEE Signal Processing Letters, 2014, 21(1): 43-46.
  • 10Chandra K P B, Gu D W, Postlethwaite I. Square root cubature information filter[J].IEEE Sensors Journal, 2013, 13(2): 750-758.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部