期刊文献+

基于数据融合的汽车发动机在线监测与故障预警系统 被引量:11

On line monitoring and fault early warning system for automobile engine based on data fusion
原文传递
导出
摘要 针对目前汽车发动机故障诊断仅局限于事后诊断、诊断准确率低的缺陷,设计了一个基于数据融合的汽车发动机在线监测与故障预警系统。利用多传感器技术采集发动机各种运行状态参数,采用改进的数据融合算法,对发动机运行状态在线监测,将发动机异常结果进行故障诊断融合,再利用声光报警系统进行准确预警,有效的克服了发动机故障诊断准确率低、效率不高的问题,实现了不解体实时监测和故障诊断预警。实验结果表明,与传统算法相比,该系统能够快速、准确地进行发动机在线监测和故障预警,具有很强的有效性和实用性。 According to the defect of limited to post diagnosis and low diagnostic accuracy rate in fault diagnosis of automobile engine, a engine online monitoring and fault early warning system based on data fusion is presented. Using multi sensor technology acquisition engine operating parameters, the improved data fusion algorithm, the engine condition monitoring, fault diagnosis of the engine abnormal results of fusion, the sound and light alarm system for accurate early warning, effectively overcomes the engine fault diagnosis accurate rate is low, the efficiency is not high, the non disintegration real time monitoring and fault diagnosis and early warning. The experimental results show that, compared with the traditional algorithm, the system can on-line monitoring and fault warning engine rapid, accurate, efficient and very practical.
出处 《自动化与仪器仪表》 2015年第12期152-154,共3页 Automation & Instrumentation
基金 河南省科技攻关重点项目(132102210359)
关键词 多传感器 数据融合 发动机 故障诊断 Multi sensor Data fusion Engine Fault diagnosis
  • 相关文献

参考文献4

二级参考文献43

  • 1魏少华,陈效华,常思勤.基于声强与神经网络技术的发动机故障诊断[J].汽车工程,2006,28(4):401-404. 被引量:5
  • 2黄游槟,薛建彬.基于BP神经网络的汽车故障诊断的研究[J].机械制造与自动化,2006,35(3):146-148. 被引量:2
  • 3李小青,李翔晟.基于神经网络与案例推理的发动机故障诊断研究[J].煤矿机械,2007,28(3):188-190. 被引量:3
  • 4KOHONEN T, BARNA G, CHRISLEY R. Statistical pattern recognition with neural networks: benchmarking studies[C]//IEEE International Conference on Neural Networks, San Diego, USA, 1988: 61-68.
  • 5FOO S, STUART G, HARVEY B, et al. Neural Network-based EKG Pattern Recognition [J]. Engineering Applications of Artificial Intelligence, 2002, 15(3-4): 253-260.
  • 6AVCI E. A new optimum feature extraction and classification method for speaker recognition: GWPNN[J]. Expert Systems with Applications, 2007, 32(2): 485-498.
  • 7UBEYLI E. Decision support systems for time-varying biomedical signals: EEG signals classification[J]. Expert Systems with Applications, 2009, 36(2): 2 275-2 284.
  • 8UYAR M, YILDIRIM S, GENCOGLU M T. An effective wavelet-based feature extraction method for classification of power quality disturbance signals[J]. Electric Power Systems Research, 2008, 78(10): 1 747-1 755.
  • 9WU J D, HSU C C, WU G Z. Fault gear identification and classification using discrete wavelet transform and adaptive neuro-fuzzy inference[J]. Expert Systems with Applications, 2009, 36(3): 6 244-6 255.
  • 10MATLAB R2008a Version Wavelet Toolbox[CP]. MathWorks Company, 2008.

共引文献19

同被引文献60

引证文献11

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部