期刊文献+

铁路沿线室外气象参数的神经网络构成 被引量:4

Study on Outdoor Weather Parameters Structured by Neural Network Arithmetic along Railways
在线阅读 下载PDF
导出
摘要 分析影响室外气象计算参数各主要因素,利用神经网络的非线性和良好的学习能力,以夏季空调室外计算(干球)温度或夏季空调室外相对湿度为例,在全国范围内建立并找到了其最优BP模型结构。在采用国家规范中标准样本进行训练、校核后,认为该模型除在效率和局部精度上仍需提高外,就整体而言输出结果误差很小,并能较好地模拟铁路沿线室外气象参数的变化规律。 According to the nonlinear character and strong study ability of neural network, an optimal BP model structure is set up in the whole country based on the analysis of important factors affecting the calculation of outdoor weather parameters, taking as an example the dry-temperature and relative humidity are calculated in the summer outdoor condition. After experimenting and verifying the standard sample of the national specifications, it is found that the global error of the output is very small while the efficiency and part of the accuracies should be improved. The regular pattern of the change of outdoor weather data along railways can be simulated well by the model.
作者 潘阳 屈睿瑰
出处 《中国铁道科学》 EI CAS CSCD 北大核心 2004年第4期129-134,共6页 China Railway Science
关键词 列车空调 气象参数 神经网络 BP模型 Air conditioning Meteorology Neural networks Optimization Parameter estimation Weather forecasting
  • 相关文献

参考文献9

二级参考文献3

共引文献62

同被引文献28

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部